阿霉素神经毒性研究进展。

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-10-01 Epub Date: 2023-06-23 DOI:10.1007/s12640-023-00652-5
Katarzyna Kamińska, Agnieszka Cudnoch-Jędrzejewska
{"title":"阿霉素神经毒性研究进展。","authors":"Katarzyna Kamińska,&nbsp;Agnieszka Cudnoch-Jędrzejewska","doi":"10.1007/s12640-023-00652-5","DOIUrl":null,"url":null,"abstract":"<p><p>Anthracyclines, a class of drugs considered as most effective anticancer drugs, used in the various regimens of cancer chemotherapy, induce long-term impairment of mitochondrial respiration, increase reactive oxygen species, and induce other mechanisms potentially leading to neurotoxicity. According to literature findings, one drug of this class - doxorubicin used to treat e.g. breast cancer, bladder cancer, lymphoma, and acute lymphocytic leukemia may induce such effects in the nervous system. Doxorubicin has poor penetration into the brain due to the lack of drug penetration through the blood-brain barrier, thus the toxicity of this agent is the result of its peripheral action. This action is manifested by cognitive impairment and anatomical changes in the brain and peripheral nervous system found in both preclinical and clinical studies in adult patients. Furthermore, more than 50% of children with cancer are treated with anthracyclines including doxorubicin, which may affect their nervous system, and lead to lifelong damage in many areas of their life. Despite ongoing research into the side effects of this drug, the mechanism of its neurotoxicity action on the central and peripheral nervous system is still not well understood. This review aims to summarize the neurotoxic effects of doxorubicin in preclinical (in vitro and in vivo) research and in clinical studies. Furthermore, it discusses the possible mechanisms of the toxic action of this agent on the nervous system.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"41 5","pages":"383-397"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499694/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review on the Neurotoxic Effects of Doxorubicin.\",\"authors\":\"Katarzyna Kamińska,&nbsp;Agnieszka Cudnoch-Jędrzejewska\",\"doi\":\"10.1007/s12640-023-00652-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anthracyclines, a class of drugs considered as most effective anticancer drugs, used in the various regimens of cancer chemotherapy, induce long-term impairment of mitochondrial respiration, increase reactive oxygen species, and induce other mechanisms potentially leading to neurotoxicity. According to literature findings, one drug of this class - doxorubicin used to treat e.g. breast cancer, bladder cancer, lymphoma, and acute lymphocytic leukemia may induce such effects in the nervous system. Doxorubicin has poor penetration into the brain due to the lack of drug penetration through the blood-brain barrier, thus the toxicity of this agent is the result of its peripheral action. This action is manifested by cognitive impairment and anatomical changes in the brain and peripheral nervous system found in both preclinical and clinical studies in adult patients. Furthermore, more than 50% of children with cancer are treated with anthracyclines including doxorubicin, which may affect their nervous system, and lead to lifelong damage in many areas of their life. Despite ongoing research into the side effects of this drug, the mechanism of its neurotoxicity action on the central and peripheral nervous system is still not well understood. This review aims to summarize the neurotoxic effects of doxorubicin in preclinical (in vitro and in vivo) research and in clinical studies. Furthermore, it discusses the possible mechanisms of the toxic action of this agent on the nervous system.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\"41 5\",\"pages\":\"383-397\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-023-00652-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00652-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蒽环类药物被认为是最有效的抗癌药物,用于癌症化疗的各种方案,可诱导线粒体呼吸长期受损,增加活性氧,并诱导其他可能导致神经毒性的机制。根据文献发现,用于治疗例如乳腺癌症、癌症膀胱癌、淋巴瘤和急性淋巴细胞白血病的这类药物——阿霉素可能会在神经系统中诱导这种作用。阿霉素由于缺乏通过血脑屏障的药物渗透性,对大脑的渗透性较差,因此该药物的毒性是其外周作用的结果。这种作用表现为成年患者的临床前和临床研究中发现的大脑和外周神经系统的认知障碍和解剖变化。此外,超过50%的癌症儿童接受了包括阿霉素在内的蒽环类药物治疗,这可能会影响他们的神经系统,并导致他们生活的许多领域终身受损。尽管正在对这种药物的副作用进行研究,但其对中枢和外周神经系统的神经毒性作用机制仍不清楚。本文旨在综述阿霉素在临床前(体外和体内)研究和临床研究中的神经毒性作用。此外,还讨论了该制剂对神经系统的毒性作用的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review on the Neurotoxic Effects of Doxorubicin.

Anthracyclines, a class of drugs considered as most effective anticancer drugs, used in the various regimens of cancer chemotherapy, induce long-term impairment of mitochondrial respiration, increase reactive oxygen species, and induce other mechanisms potentially leading to neurotoxicity. According to literature findings, one drug of this class - doxorubicin used to treat e.g. breast cancer, bladder cancer, lymphoma, and acute lymphocytic leukemia may induce such effects in the nervous system. Doxorubicin has poor penetration into the brain due to the lack of drug penetration through the blood-brain barrier, thus the toxicity of this agent is the result of its peripheral action. This action is manifested by cognitive impairment and anatomical changes in the brain and peripheral nervous system found in both preclinical and clinical studies in adult patients. Furthermore, more than 50% of children with cancer are treated with anthracyclines including doxorubicin, which may affect their nervous system, and lead to lifelong damage in many areas of their life. Despite ongoing research into the side effects of this drug, the mechanism of its neurotoxicity action on the central and peripheral nervous system is still not well understood. This review aims to summarize the neurotoxic effects of doxorubicin in preclinical (in vitro and in vivo) research and in clinical studies. Furthermore, it discusses the possible mechanisms of the toxic action of this agent on the nervous system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1