{"title":"基于isatin的融合杂环表皮生长因子受体抑制剂的设计、合成、分子对接和生物学评价。","authors":"Ankush Kumar, Bhupinder Kumar, Rohit Bhatia","doi":"10.1089/adt.2022.120","DOIUrl":null,"url":null,"abstract":"<p><p>A series of isatin-based fused heterocycles were designed, synthesized, and evaluated for anticancer activity against four cancer cell lines: MCF-7, MDA-MB-231, A549, and HL-60. Among them, Q<sub>3</sub> and T<sub>4</sub> were found to be potent anticancer agents. Furthermore, two compounds Q<sub>3</sub> and T<sub>4</sub> were selected for epidermal growth factor receptor (EGFR) inhibitory activity. Two compounds Q<sub>3</sub> and T<sub>4</sub> were found to be most potent EGFR inhibitors with IC<sub>50</sub> of 0.22 ± 0.10 and 0.19 ± 0.07 μM. The EGFR inhibitory activity of standard drug erlotinib was 0.08 ± 0.02 μM. Structural Activity Relationship studies showed that electronegative atoms were necessary for EGFR inhibitory potential. Finally, molecular docking studies were carried out to check the binding pattern of synthesized derivatives with the adenosine triphosphate (ATP) binding site of EGFR and results revealed that compounds Q<sub>3</sub> (-9.2 kcal/mol) and T<sub>4</sub> (-8.9 kcal/mol) exhibited better binding affinity than reference drug erlotinib (-7.3 kcal/mol).</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"222-233"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Molecular Docking, and Biological Evaluation of Isatin-Based Fused Heterocycles As Epidermal Growth Factor Receptor Inhibitors.\",\"authors\":\"Ankush Kumar, Bhupinder Kumar, Rohit Bhatia\",\"doi\":\"10.1089/adt.2022.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of isatin-based fused heterocycles were designed, synthesized, and evaluated for anticancer activity against four cancer cell lines: MCF-7, MDA-MB-231, A549, and HL-60. Among them, Q<sub>3</sub> and T<sub>4</sub> were found to be potent anticancer agents. Furthermore, two compounds Q<sub>3</sub> and T<sub>4</sub> were selected for epidermal growth factor receptor (EGFR) inhibitory activity. Two compounds Q<sub>3</sub> and T<sub>4</sub> were found to be most potent EGFR inhibitors with IC<sub>50</sub> of 0.22 ± 0.10 and 0.19 ± 0.07 μM. The EGFR inhibitory activity of standard drug erlotinib was 0.08 ± 0.02 μM. Structural Activity Relationship studies showed that electronegative atoms were necessary for EGFR inhibitory potential. Finally, molecular docking studies were carried out to check the binding pattern of synthesized derivatives with the adenosine triphosphate (ATP) binding site of EGFR and results revealed that compounds Q<sub>3</sub> (-9.2 kcal/mol) and T<sub>4</sub> (-8.9 kcal/mol) exhibited better binding affinity than reference drug erlotinib (-7.3 kcal/mol).</p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\"21 5\",\"pages\":\"222-233\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2022.120\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2022.120","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Design, Synthesis, Molecular Docking, and Biological Evaluation of Isatin-Based Fused Heterocycles As Epidermal Growth Factor Receptor Inhibitors.
A series of isatin-based fused heterocycles were designed, synthesized, and evaluated for anticancer activity against four cancer cell lines: MCF-7, MDA-MB-231, A549, and HL-60. Among them, Q3 and T4 were found to be potent anticancer agents. Furthermore, two compounds Q3 and T4 were selected for epidermal growth factor receptor (EGFR) inhibitory activity. Two compounds Q3 and T4 were found to be most potent EGFR inhibitors with IC50 of 0.22 ± 0.10 and 0.19 ± 0.07 μM. The EGFR inhibitory activity of standard drug erlotinib was 0.08 ± 0.02 μM. Structural Activity Relationship studies showed that electronegative atoms were necessary for EGFR inhibitory potential. Finally, molecular docking studies were carried out to check the binding pattern of synthesized derivatives with the adenosine triphosphate (ATP) binding site of EGFR and results revealed that compounds Q3 (-9.2 kcal/mol) and T4 (-8.9 kcal/mol) exhibited better binding affinity than reference drug erlotinib (-7.3 kcal/mol).
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts