利用网络结构提高池化测试效率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-16 DOI:10.1111/rssc.12594
Daniel K. Sewell
{"title":"利用网络结构提高池化测试效率","authors":"Daniel K. Sewell","doi":"10.1111/rssc.12594","DOIUrl":null,"url":null,"abstract":"<p>Screening is a powerful tool for infection control, allowing for infectious individuals, whether they be symptomatic or asymptomatic, to be identified and isolated. The resource burden of regular and comprehensive screening can often be prohibitive, however. One such measure to address this is pooled testing, whereby groups of individuals are each given a composite test; should a group receive a positive diagnostic test result, those comprising the group are then tested individually. Infectious disease is spread through a transmission network, and this paper shows how assigning individuals to pools based on this underlying network can improve the efficiency of the pooled testing strategy, thereby reducing the resource burden. We designed a simulated annealing algorithm to improve the pooled testing efficiency as measured by the ratio of the expected number of correct classifications to the expected number of tests performed. We then evaluated our approach using an agent-based model designed to simulate the spread of SARS-CoV-2 in a school setting. Our results suggest that our approach can decrease the number of tests required to regularly screen the student body, and that these reductions are quite robust to assigning pools based on partially observed or noisy versions of the network.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/29/RSSC-71-1648.PMC9826453.pdf","citationCount":"2","resultStr":"{\"title\":\"Leveraging network structure to improve pooled testing efficiency\",\"authors\":\"Daniel K. Sewell\",\"doi\":\"10.1111/rssc.12594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Screening is a powerful tool for infection control, allowing for infectious individuals, whether they be symptomatic or asymptomatic, to be identified and isolated. The resource burden of regular and comprehensive screening can often be prohibitive, however. One such measure to address this is pooled testing, whereby groups of individuals are each given a composite test; should a group receive a positive diagnostic test result, those comprising the group are then tested individually. Infectious disease is spread through a transmission network, and this paper shows how assigning individuals to pools based on this underlying network can improve the efficiency of the pooled testing strategy, thereby reducing the resource burden. We designed a simulated annealing algorithm to improve the pooled testing efficiency as measured by the ratio of the expected number of correct classifications to the expected number of tests performed. We then evaluated our approach using an agent-based model designed to simulate the spread of SARS-CoV-2 in a school setting. Our results suggest that our approach can decrease the number of tests required to regularly screen the student body, and that these reductions are quite robust to assigning pools based on partially observed or noisy versions of the network.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/29/RSSC-71-1648.PMC9826453.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12594\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

筛查是控制感染的有力工具,可以识别和隔离有症状或无症状的感染个体。然而,定期和全面筛查的资源负担往往令人望而却步。解决这一问题的一个这样的措施是集合测试,即每组个体都接受一个复合测试;如果一个组的诊断测试结果呈阳性,则该组的成员将分别接受测试。传染病是通过传播网络传播的,本文展示了如何基于这个底层网络将个体分配到池中,从而提高池检测策略的效率,从而减少资源负担。我们设计了一种模拟退火算法,通过期望正确分类数与期望执行的测试数之比来提高池测试效率。然后,我们使用基于代理的模型评估了我们的方法,该模型旨在模拟SARS-CoV-2在学校环境中的传播。我们的结果表明,我们的方法可以减少定期筛选学生群体所需的测试次数,并且这些减少对于基于部分观察到的或有噪声的网络版本分配池非常稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging network structure to improve pooled testing efficiency

Screening is a powerful tool for infection control, allowing for infectious individuals, whether they be symptomatic or asymptomatic, to be identified and isolated. The resource burden of regular and comprehensive screening can often be prohibitive, however. One such measure to address this is pooled testing, whereby groups of individuals are each given a composite test; should a group receive a positive diagnostic test result, those comprising the group are then tested individually. Infectious disease is spread through a transmission network, and this paper shows how assigning individuals to pools based on this underlying network can improve the efficiency of the pooled testing strategy, thereby reducing the resource burden. We designed a simulated annealing algorithm to improve the pooled testing efficiency as measured by the ratio of the expected number of correct classifications to the expected number of tests performed. We then evaluated our approach using an agent-based model designed to simulate the spread of SARS-CoV-2 in a school setting. Our results suggest that our approach can decrease the number of tests required to regularly screen the student body, and that these reductions are quite robust to assigning pools based on partially observed or noisy versions of the network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1