{"title":"随机项目斜率回归:一种替代的测量模型,它可以解释与单个项目相关的相似性和差异性。","authors":"Ed Donnellan, Satoshi Usami, Kou Murayama","doi":"10.1037/met0000587","DOIUrl":null,"url":null,"abstract":"<p><p>In psychology, researchers often predict a dependent variable (DV) consisting of multiple measurements (e.g., scale items measuring a concept). To analyze the data, researchers typically aggregate (sum/average) scores across items and use this as a DV. Alternatively, they may define the DV as a common factor using structural equation modeling. However, both approaches neglect the possibility that an independent variable (IV) may have different relationships to individual items. This variance in individual item slopes arises because items are randomly sampled from an infinite pool of items reflecting the construct that the scale purports to measure. Here, we offer a mixed-effects model called <i>random item slope regression,</i> which accounts for both similarities and differences of individual item associations. Critically, we argue that random item slope regression poses an alternative measurement model to common factor models prevalent in psychology. Unlike these models, the proposed model supposes no latent constructs and instead assumes that individual items have direct causal relationships with the IV. Such operationalization is especially useful when researchers want to assess a broad construct with heterogeneous items. Using mathematical proof and simulation, we demonstrate that random item slopes cause inflation of Type I error when not accounted for, particularly when the sample size (number of participants) is large. In real-world data (<i>n</i> = 564 participants) using commonly used surveys and two reaction time tasks, we demonstrate that random item slopes are present at problematic levels. We further demonstrate that common statistical indices are not sufficient to diagnose the presence of random item slopes. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random item slope regression: An alternative measurement model that accounts for both similarities and differences in association with individual items.\",\"authors\":\"Ed Donnellan, Satoshi Usami, Kou Murayama\",\"doi\":\"10.1037/met0000587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In psychology, researchers often predict a dependent variable (DV) consisting of multiple measurements (e.g., scale items measuring a concept). To analyze the data, researchers typically aggregate (sum/average) scores across items and use this as a DV. Alternatively, they may define the DV as a common factor using structural equation modeling. However, both approaches neglect the possibility that an independent variable (IV) may have different relationships to individual items. This variance in individual item slopes arises because items are randomly sampled from an infinite pool of items reflecting the construct that the scale purports to measure. Here, we offer a mixed-effects model called <i>random item slope regression,</i> which accounts for both similarities and differences of individual item associations. Critically, we argue that random item slope regression poses an alternative measurement model to common factor models prevalent in psychology. Unlike these models, the proposed model supposes no latent constructs and instead assumes that individual items have direct causal relationships with the IV. Such operationalization is especially useful when researchers want to assess a broad construct with heterogeneous items. Using mathematical proof and simulation, we demonstrate that random item slopes cause inflation of Type I error when not accounted for, particularly when the sample size (number of participants) is large. In real-world data (<i>n</i> = 564 participants) using commonly used surveys and two reaction time tasks, we demonstrate that random item slopes are present at problematic levels. We further demonstrate that common statistical indices are not sufficient to diagnose the presence of random item slopes. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000587\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000587","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Random item slope regression: An alternative measurement model that accounts for both similarities and differences in association with individual items.
In psychology, researchers often predict a dependent variable (DV) consisting of multiple measurements (e.g., scale items measuring a concept). To analyze the data, researchers typically aggregate (sum/average) scores across items and use this as a DV. Alternatively, they may define the DV as a common factor using structural equation modeling. However, both approaches neglect the possibility that an independent variable (IV) may have different relationships to individual items. This variance in individual item slopes arises because items are randomly sampled from an infinite pool of items reflecting the construct that the scale purports to measure. Here, we offer a mixed-effects model called random item slope regression, which accounts for both similarities and differences of individual item associations. Critically, we argue that random item slope regression poses an alternative measurement model to common factor models prevalent in psychology. Unlike these models, the proposed model supposes no latent constructs and instead assumes that individual items have direct causal relationships with the IV. Such operationalization is especially useful when researchers want to assess a broad construct with heterogeneous items. Using mathematical proof and simulation, we demonstrate that random item slopes cause inflation of Type I error when not accounted for, particularly when the sample size (number of participants) is large. In real-world data (n = 564 participants) using commonly used surveys and two reaction time tasks, we demonstrate that random item slopes are present at problematic levels. We further demonstrate that common statistical indices are not sufficient to diagnose the presence of random item slopes. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.