比较系统发生组学和系统转录组学揭示了固氮根瘤共生的遗传复杂性。

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Communications Pub Date : 2024-01-08 Epub Date: 2023-08-08 DOI:10.1016/j.xplc.2023.100671
Yu Zhang, Yuan Fu, Wenfei Xian, Xiuli Li, Yong Feng, Fengjiao Bu, Yan Shi, Shiyu Chen, Robin van Velzen, Kai Battenberg, Alison M Berry, Marco G Salgado, Hui Liu, Tingshuang Yi, Pascale Fournier, Nicole Alloisio, Petar Pujic, Hasna Boubakri, M Eric Schranz, Pierre-Marc Delaux, Gane Ka-Shu Wong, Valerie Hocher, Sergio Svistoonoff, Hassen Gherbi, Ertao Wang, Wouter Kohlen, Luis G Wall, Martin Parniske, Katharina Pawlowski, Philippe Normand, Jeffrey J Doyle, Shifeng Cheng
{"title":"比较系统发生组学和系统转录组学揭示了固氮根瘤共生的遗传复杂性。","authors":"Yu Zhang, Yuan Fu, Wenfei Xian, Xiuli Li, Yong Feng, Fengjiao Bu, Yan Shi, Shiyu Chen, Robin van Velzen, Kai Battenberg, Alison M Berry, Marco G Salgado, Hui Liu, Tingshuang Yi, Pascale Fournier, Nicole Alloisio, Petar Pujic, Hasna Boubakri, M Eric Schranz, Pierre-Marc Delaux, Gane Ka-Shu Wong, Valerie Hocher, Sergio Svistoonoff, Hassen Gherbi, Ertao Wang, Wouter Kohlen, Luis G Wall, Martin Parniske, Katharina Pawlowski, Philippe Normand, Jeffrey J Doyle, Shifeng Cheng","doi":"10.1016/j.xplc.2023.100671","DOIUrl":null,"url":null,"abstract":"<p><p>Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"100671"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis.\",\"authors\":\"Yu Zhang, Yuan Fu, Wenfei Xian, Xiuli Li, Yong Feng, Fengjiao Bu, Yan Shi, Shiyu Chen, Robin van Velzen, Kai Battenberg, Alison M Berry, Marco G Salgado, Hui Liu, Tingshuang Yi, Pascale Fournier, Nicole Alloisio, Petar Pujic, Hasna Boubakri, M Eric Schranz, Pierre-Marc Delaux, Gane Ka-Shu Wong, Valerie Hocher, Sergio Svistoonoff, Hassen Gherbi, Ertao Wang, Wouter Kohlen, Luis G Wall, Martin Parniske, Katharina Pawlowski, Philippe Normand, Jeffrey J Doyle, Shifeng Cheng\",\"doi\":\"10.1016/j.xplc.2023.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"100671\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2023.100671\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2023.100671","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物根结与互生固氮菌的共生(RNS)仅限于被子植物中的一个支系,即固氮结节支系(NFNC),豆科植物对这一共生关系的理解最为透彻。结节物种有许多共性,这可以解释为它们在一亿多年前从一个共同祖先分化而来,也可以解释为它们在同一时期独立起源后趋于一致。无论如何,对不同的结瘤综合征进行比较分析,可以让人们深入了解结瘤的制约因素--功能性共生必须获得或不能失去的东西,以及共生中的变异纬度。然而,关于结核,尤其是豆科植物以外的结核,还有许多知识有待了解。在这里,我们对 88 个物种进行了大规模的系统发生组分析,并辅以 151 个 RNA-seq 文库,以阐明 RNS 的进化。我们的系统发生组分析进一步强调了转录因子 NIN 作为结瘤主调节因子的独特性,并确定了影响 NFNC 功能的关键突变。比较转录组评估揭示了不同结核植物的结核特异性上调基因,同时还发现了结核特异性和氮响应基因。在四个代表性物种中,约 70% 的共生相关基因高度保守,而防御相关基因和宿主范围限制基因往往具有品系特异性。我们的研究还发现了 90 多万个保守的非编码元素(CNEs),其中 30 多万个是取样的 NFNC 物种所特有的。NFNC 特有的 CNEs 富含活性 H3K9ac 标记,并与可访问的染色质区域相关,因此代表了参与 RNS 的基因的候选调控元件池。总之,我们的研究结果提供了对结核进化的新见解,并为重要农作物的 RNS 性状工程奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis.

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
期刊最新文献
A natural variation of TaERF-A1 encoding an AP2/ERF transcription factor confers semidwarf plant architecture and increased lodging resistance in wheat. Genetic engineering including genome editing for broad-spectrum disease resistance in crops. Creation of rapeseed germplasm with high polyunsaturated fatty acid content by relative introgression of Brassica carinata. The E3 ligase OsHel2 impedes readthrough of stalled mRNAs to regulate male fertility in thermo-sensitive genic male sterile rice. Green production of apples delivers environmental and economic benefits in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1