Renata de Fátima Bretanha Rocha, Arielly Oliveira Garcia, Pamela Itajara Otto, Mateus Guimarães Dos Santos, Marcos Vinícius Barbosa da Silva, Marta Fonseca Martins, Marco Antônio Machado, João Claudio do Carmo Panetto, Simone Eliza Facioni Guimarães
{"title":"吉尔牛卵母细胞和胚胎数量的单步全基因组关联研究和gwas后分析。","authors":"Renata de Fátima Bretanha Rocha, Arielly Oliveira Garcia, Pamela Itajara Otto, Mateus Guimarães Dos Santos, Marcos Vinícius Barbosa da Silva, Marta Fonseca Martins, Marco Antônio Machado, João Claudio do Carmo Panetto, Simone Eliza Facioni Guimarães","doi":"10.1007/s00335-023-10009-0","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-Wide Association Studies (GWAS) are used for identification of quantitate trait loci (QTL) and genes associated with several traits. We aimed to identify genomic regions, genes, and biological processes associated with number of total and viable oocytes, and number of embryos in Gir dairy cattle. A dataset with 17,526 follicular aspirations, including the following traits: number of viable oocytes (VO), number of total oocytes (TO), and number of embryos (EMBR) from 1641 Gir donors was provided by five different stock farms. A genotype file with 2093 animals and 395,524 SNP markers was used to perform a single-step GWAS analysis for each trait. The top 10 windows with the highest percentage of additive genetic variance explained by 100 adjacent SNPs were selected. The genomic regions identified in our work were overlapped with QTLs from QTL database on chromosomes 1, 2, 5, 6, 7, 8, 9, 13, 17, 18, 20, 21, 22, 24, and 29. These QTLs were classified as External, Health, Meat and carcass, Production or Reproduction traits, and about 38% were related to Reproduction. In total, 117 genes were identified, of which 111 were protein-coding genes. Exclusively associations were observed for 42 genes with EMBR, and 1 with TO. Also, 42 genes were in common between VO and TO, 28 between VO and EMBR, and four genes were in common among all traits. In conclusion, great part of the identified genes plays a functional role in initial embryo development or general cell functions. The protein-coding genes ARNT, EGR1, HIF1A, AHR, and PAX2 are good markers for the production of oocytes and embryos in Gir cattle.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":"34 3","pages":"497-508"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-step genome-wide association studies and post-GWAS analyses for the number of oocytes and embryos in Gir cattle.\",\"authors\":\"Renata de Fátima Bretanha Rocha, Arielly Oliveira Garcia, Pamela Itajara Otto, Mateus Guimarães Dos Santos, Marcos Vinícius Barbosa da Silva, Marta Fonseca Martins, Marco Antônio Machado, João Claudio do Carmo Panetto, Simone Eliza Facioni Guimarães\",\"doi\":\"10.1007/s00335-023-10009-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-Wide Association Studies (GWAS) are used for identification of quantitate trait loci (QTL) and genes associated with several traits. We aimed to identify genomic regions, genes, and biological processes associated with number of total and viable oocytes, and number of embryos in Gir dairy cattle. A dataset with 17,526 follicular aspirations, including the following traits: number of viable oocytes (VO), number of total oocytes (TO), and number of embryos (EMBR) from 1641 Gir donors was provided by five different stock farms. A genotype file with 2093 animals and 395,524 SNP markers was used to perform a single-step GWAS analysis for each trait. The top 10 windows with the highest percentage of additive genetic variance explained by 100 adjacent SNPs were selected. The genomic regions identified in our work were overlapped with QTLs from QTL database on chromosomes 1, 2, 5, 6, 7, 8, 9, 13, 17, 18, 20, 21, 22, 24, and 29. These QTLs were classified as External, Health, Meat and carcass, Production or Reproduction traits, and about 38% were related to Reproduction. In total, 117 genes were identified, of which 111 were protein-coding genes. Exclusively associations were observed for 42 genes with EMBR, and 1 with TO. Also, 42 genes were in common between VO and TO, 28 between VO and EMBR, and four genes were in common among all traits. In conclusion, great part of the identified genes plays a functional role in initial embryo development or general cell functions. The protein-coding genes ARNT, EGR1, HIF1A, AHR, and PAX2 are good markers for the production of oocytes and embryos in Gir cattle.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\"34 3\",\"pages\":\"497-508\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-023-10009-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-10009-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-step genome-wide association studies and post-GWAS analyses for the number of oocytes and embryos in Gir cattle.
Genome-Wide Association Studies (GWAS) are used for identification of quantitate trait loci (QTL) and genes associated with several traits. We aimed to identify genomic regions, genes, and biological processes associated with number of total and viable oocytes, and number of embryos in Gir dairy cattle. A dataset with 17,526 follicular aspirations, including the following traits: number of viable oocytes (VO), number of total oocytes (TO), and number of embryos (EMBR) from 1641 Gir donors was provided by five different stock farms. A genotype file with 2093 animals and 395,524 SNP markers was used to perform a single-step GWAS analysis for each trait. The top 10 windows with the highest percentage of additive genetic variance explained by 100 adjacent SNPs were selected. The genomic regions identified in our work were overlapped with QTLs from QTL database on chromosomes 1, 2, 5, 6, 7, 8, 9, 13, 17, 18, 20, 21, 22, 24, and 29. These QTLs were classified as External, Health, Meat and carcass, Production or Reproduction traits, and about 38% were related to Reproduction. In total, 117 genes were identified, of which 111 were protein-coding genes. Exclusively associations were observed for 42 genes with EMBR, and 1 with TO. Also, 42 genes were in common between VO and TO, 28 between VO and EMBR, and four genes were in common among all traits. In conclusion, great part of the identified genes plays a functional role in initial embryo development or general cell functions. The protein-coding genes ARNT, EGR1, HIF1A, AHR, and PAX2 are good markers for the production of oocytes and embryos in Gir cattle.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.