我们能用斑马鱼来模拟自闭症吗?

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2023-08-25 DOI:10.1111/dgd.12888
Philip Washbourne
{"title":"我们能用斑马鱼来模拟自闭症吗?","authors":"Philip Washbourne","doi":"10.1111/dgd.12888","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorder (ASD) is one of the most common, heritable neuropsychiatric disorders in the world, affecting almost 1% of the population. The core symptoms used to diagnose ASD are decreased social interaction and increased repetitive behaviors. Despite the large number of affected individuals, the precise mechanisms that cause this disorder remain unclear. The identification of genes and environmental factors associated with ASD allows the study of the underlying mechanisms in animal models. Although ASD presents as a human disorder, based on recent advances in understanding their brain anatomy, physiology, behavior, and evolutionary conservation of neuronal cell types, I propose that zebrafish may provide novel insights into the etiology.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 8","pages":"453-458"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Can we model autism using zebrafish?\",\"authors\":\"Philip Washbourne\",\"doi\":\"10.1111/dgd.12888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autism spectrum disorder (ASD) is one of the most common, heritable neuropsychiatric disorders in the world, affecting almost 1% of the population. The core symptoms used to diagnose ASD are decreased social interaction and increased repetitive behaviors. Despite the large number of affected individuals, the precise mechanisms that cause this disorder remain unclear. The identification of genes and environmental factors associated with ASD allows the study of the underlying mechanisms in animal models. Although ASD presents as a human disorder, based on recent advances in understanding their brain anatomy, physiology, behavior, and evolutionary conservation of neuronal cell types, I propose that zebrafish may provide novel insights into the etiology.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"65 8\",\"pages\":\"453-458\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12888\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12888","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

自闭症谱系障碍(ASD)是世界上最常见的、可遗传的神经精神障碍之一,影响着近1%的人口。用于诊断ASD的核心症状是社交互动减少和重复行为增加。尽管受影响的个体数量众多,但导致这种疾病的确切机制仍不清楚。与ASD相关的基因和环境因素的鉴定允许在动物模型中研究潜在的机制。尽管ASD是一种人类疾病,但基于对其大脑解剖、生理、行为和神经元细胞类型进化保护的最新了解,我认为斑马鱼可能会为病因提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can we model autism using zebrafish?

Autism spectrum disorder (ASD) is one of the most common, heritable neuropsychiatric disorders in the world, affecting almost 1% of the population. The core symptoms used to diagnose ASD are decreased social interaction and increased repetitive behaviors. Despite the large number of affected individuals, the precise mechanisms that cause this disorder remain unclear. The identification of genes and environmental factors associated with ASD allows the study of the underlying mechanisms in animal models. Although ASD presents as a human disorder, based on recent advances in understanding their brain anatomy, physiology, behavior, and evolutionary conservation of neuronal cell types, I propose that zebrafish may provide novel insights into the etiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Mild cryoinjury in zebrafish fin induces regenerative response without blastema formation. Issue Information Understanding disorders of the human nervous system: How fish models reveal disease mechanisms from single molecules to behavior (part 2) Regeneration of Lumbriculus variegatus requires post-amputation production of reactive oxygen species. "Fly to New World": Meeting report of the 16th Japanese Drosophila research conference (JDRC16).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1