在现实世界的高维类别领域中测试分类和新旧识别的形式认知模型。

IF 3 2区 心理学 Q1 PSYCHOLOGY Cognitive Psychology Pub Date : 2023-09-01 DOI:10.1016/j.cogpsych.2023.101596
Brian J. Meagher, Robert M. Nosofsky
{"title":"在现实世界的高维类别领域中测试分类和新旧识别的形式认知模型。","authors":"Brian J. Meagher,&nbsp;Robert M. Nosofsky","doi":"10.1016/j.cogpsych.2023.101596","DOIUrl":null,"url":null,"abstract":"<div><p>Categorization and old-new recognition memory are closely linked topics in the cognitive-psychology literature and there have been extensive past efforts at developing unified formal modeling accounts of these fundamental psychological processes. However, the existing formal-modeling literature has almost exclusively used small sets of simplified stimuli and artificial category structures. The present work extends this literature by collecting both categorization and old-new recognition judgments on a large set of high-dimensional stimuli that form real-world category structures: namely, a set of 540 images of rocks belonging to the geologically-defined categories <em>igneous</em>, <em>metamorphic</em> and <em>sedimentary</em>. Participants first engaged in a learning phase in which they classified large sets of training instances into these real-world categories. This was followed by a test phase in which they classified both training and novel transfer items into the learned categories and also judged whether each item was old or new. We attempted to model both the classification and recognition test data at the level of individual items. Ultimately, the categorization data were well fit by both an exemplar and clustering model, but not by a prototype model. Only the exemplar model was able to provide a reasonable first-order account of the old-new recognition data; however, the standard version of the model failed to capture the variability in hit rates within the class of old-training items themselves. An extended hybrid-similarity version of the exemplar model that made allowance for boosts in self-similarity due to matching distinctive features yielded much improved accounts of the old-new recognition data. The study is among the first to test cognitive-process models on their ability to account quantitatively for old-new recognition of real-world, high-dimensional stimuli at the level of individual items.</p></div>","PeriodicalId":50669,"journal":{"name":"Cognitive Psychology","volume":"145 ","pages":"Article 101596"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing formal cognitive models of classification and old-new recognition in a real-world high-dimensional category domain\",\"authors\":\"Brian J. Meagher,&nbsp;Robert M. Nosofsky\",\"doi\":\"10.1016/j.cogpsych.2023.101596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Categorization and old-new recognition memory are closely linked topics in the cognitive-psychology literature and there have been extensive past efforts at developing unified formal modeling accounts of these fundamental psychological processes. However, the existing formal-modeling literature has almost exclusively used small sets of simplified stimuli and artificial category structures. The present work extends this literature by collecting both categorization and old-new recognition judgments on a large set of high-dimensional stimuli that form real-world category structures: namely, a set of 540 images of rocks belonging to the geologically-defined categories <em>igneous</em>, <em>metamorphic</em> and <em>sedimentary</em>. Participants first engaged in a learning phase in which they classified large sets of training instances into these real-world categories. This was followed by a test phase in which they classified both training and novel transfer items into the learned categories and also judged whether each item was old or new. We attempted to model both the classification and recognition test data at the level of individual items. Ultimately, the categorization data were well fit by both an exemplar and clustering model, but not by a prototype model. Only the exemplar model was able to provide a reasonable first-order account of the old-new recognition data; however, the standard version of the model failed to capture the variability in hit rates within the class of old-training items themselves. An extended hybrid-similarity version of the exemplar model that made allowance for boosts in self-similarity due to matching distinctive features yielded much improved accounts of the old-new recognition data. The study is among the first to test cognitive-process models on their ability to account quantitatively for old-new recognition of real-world, high-dimensional stimuli at the level of individual items.</p></div>\",\"PeriodicalId\":50669,\"journal\":{\"name\":\"Cognitive Psychology\",\"volume\":\"145 \",\"pages\":\"Article 101596\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010028523000543\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010028523000543","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分类和新旧识别记忆是认知心理学文献中密切相关的主题,过去曾在开发这些基本心理过程的统一形式建模方面做出过大量努力。然而,现有的形式建模文献几乎只使用了少量的简化刺激和人工类别结构。本工作通过收集一大组高维刺激的分类和新旧识别判断来扩展这一文献,这些刺激形成了现实世界的类别结构:即一组540张岩石图像,属于地质定义的火成岩、变质岩和沉积岩类别。参与者首先进入了一个学习阶段,在这个阶段,他们将大量的训练实例分类到这些现实世界的类别中。接下来是测试阶段,他们将训练和新的迁移项目分为学习类别,并判断每个项目是旧的还是新的。我们试图在单个项目的水平上对分类和识别测试数据进行建模。最终,样本模型和聚类模型都很好地拟合了分类数据,但原型模型没有。只有示例模型能够提供新旧识别数据的合理一阶说明;然而,该模型的标准版本未能捕捉到旧训练项目类别中命中率的可变性。样本模型的扩展混合相似性版本考虑到了由于匹配不同特征而提高的自相似性,从而大大改进了新旧识别数据的描述。这项研究是首批测试认知过程模型在单个项目水平上定量解释对现实世界高维刺激的新旧识别能力的研究之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing formal cognitive models of classification and old-new recognition in a real-world high-dimensional category domain

Categorization and old-new recognition memory are closely linked topics in the cognitive-psychology literature and there have been extensive past efforts at developing unified formal modeling accounts of these fundamental psychological processes. However, the existing formal-modeling literature has almost exclusively used small sets of simplified stimuli and artificial category structures. The present work extends this literature by collecting both categorization and old-new recognition judgments on a large set of high-dimensional stimuli that form real-world category structures: namely, a set of 540 images of rocks belonging to the geologically-defined categories igneous, metamorphic and sedimentary. Participants first engaged in a learning phase in which they classified large sets of training instances into these real-world categories. This was followed by a test phase in which they classified both training and novel transfer items into the learned categories and also judged whether each item was old or new. We attempted to model both the classification and recognition test data at the level of individual items. Ultimately, the categorization data were well fit by both an exemplar and clustering model, but not by a prototype model. Only the exemplar model was able to provide a reasonable first-order account of the old-new recognition data; however, the standard version of the model failed to capture the variability in hit rates within the class of old-training items themselves. An extended hybrid-similarity version of the exemplar model that made allowance for boosts in self-similarity due to matching distinctive features yielded much improved accounts of the old-new recognition data. The study is among the first to test cognitive-process models on their ability to account quantitatively for old-new recognition of real-world, high-dimensional stimuli at the level of individual items.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Psychology
Cognitive Psychology 医学-心理学
CiteScore
5.40
自引率
3.80%
发文量
29
审稿时长
50 days
期刊介绍: Cognitive Psychology is concerned with advances in the study of attention, memory, language processing, perception, problem solving, and thinking. Cognitive Psychology specializes in extensive articles that have a major impact on cognitive theory and provide new theoretical advances. Research Areas include: • Artificial intelligence • Developmental psychology • Linguistics • Neurophysiology • Social psychology.
期刊最新文献
Free time, sharper mind: A computational dive into working memory improvement. Editorial Board Building compressed causal models of the world Doing things efficiently: Testing an account of why simple explanations are satisfying Perceptual inference corrects function word errors in reading: Errors that are not noticed do not disrupt eye movements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1