社交网络中使用多智能体的深度递归高斯嵌套推荐。

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolving Systems Pub Date : 2022-01-01 Epub Date: 2022-04-09 DOI:10.1007/s12530-022-09435-3
Vinita Tapaskar, Mallikarjun M Math
{"title":"社交网络中使用多智能体的深度递归高斯嵌套推荐。","authors":"Vinita Tapaskar,&nbsp;Mallikarjun M Math","doi":"10.1007/s12530-022-09435-3","DOIUrl":null,"url":null,"abstract":"<p><p>Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problems with real-world complexity. With big data precise recommendation has yet to be answered. In proposed work Deep Recurrent Gaussian Nesterov's Optimal Gradient (DR-GNOG) that combines deep learning with a multi-agent scenario for optimal and precise recommendation. The DR-GNOG is split into three layers, an input layer, two hidden layers and an output layer. The tweets obtained from the users are provided to the input layer by the Tweet Accumulator Agent. Then, in the first hidden layer, Tweet Classifier Agent performs optimized and relevant tweet classification by means of Gaussian Nesterov's Optimal Gradient model. In the second layer, a Deep Recurrent Predictive Recommendation model is designed to concentrate on the vanishing gradient issue arising due to updated tweets obtained from same user at different time instance. Finally, with the aid of hyperbolic activation function in the output layer, building block of the predictive recommendation is obtained. In the experimental study the proposed method is found better than existing GANCF and Bootstrapping method 13-21% in case of recommendation accuracy, 22-32% better in recommendation time and 15-22% better in recall rate.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"13 3","pages":"435-452"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994100/pdf/","citationCount":"2","resultStr":"{\"title\":\"Deep recurrent Gaussian Nesterovs recommendation using multi-agent in social networks.\",\"authors\":\"Vinita Tapaskar,&nbsp;Mallikarjun M Math\",\"doi\":\"10.1007/s12530-022-09435-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problems with real-world complexity. With big data precise recommendation has yet to be answered. In proposed work Deep Recurrent Gaussian Nesterov's Optimal Gradient (DR-GNOG) that combines deep learning with a multi-agent scenario for optimal and precise recommendation. The DR-GNOG is split into three layers, an input layer, two hidden layers and an output layer. The tweets obtained from the users are provided to the input layer by the Tweet Accumulator Agent. Then, in the first hidden layer, Tweet Classifier Agent performs optimized and relevant tweet classification by means of Gaussian Nesterov's Optimal Gradient model. In the second layer, a Deep Recurrent Predictive Recommendation model is designed to concentrate on the vanishing gradient issue arising due to updated tweets obtained from same user at different time instance. Finally, with the aid of hyperbolic activation function in the output layer, building block of the predictive recommendation is obtained. In the experimental study the proposed method is found better than existing GANCF and Bootstrapping method 13-21% in case of recommendation accuracy, 22-32% better in recommendation time and 15-22% better in recall rate.</p>\",\"PeriodicalId\":12174,\"journal\":{\"name\":\"Evolving Systems\",\"volume\":\"13 3\",\"pages\":\"435-452\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994100/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolving Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12530-022-09435-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09435-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

由于大数据量的不断增加,社交网络中的大量信息阻止了用户智能获取有用信息,因此出现了许多推荐系统。多智能体深度学习获得了快速的吸引力,最新的成就解决了现实世界中复杂的问题。有了大数据,精确的建议还有待回答。在所提出的工作中,深度递归高斯Nesterov的最优梯度(DR-GNOG)将深度学习与多智能体场景相结合,以实现最优和精确的推荐。DR-GNOG分为三层,一个输入层、两个隐藏层和一个输出层。从用户那里获得的推文由推文累加器代理提供给输入层。然后,在第一个隐藏层中,推文分类器Agent利用Gaussian Nesterov的最优梯度模型对推文进行优化和相关的分类。在第二层中,设计了一个深度递归预测推荐模型,以集中研究由于在不同时间实例从同一用户获得更新推文而引起的消失梯度问题。最后,借助于输出层中的双曲激活函数,获得了预测推荐的构建块。在实验研究中,所提出的方法在推荐准确率方面比现有的GANCF和Bootstrapping方法好13-21%,在推荐时间方面好22-32%,在召回率方面好15-22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep recurrent Gaussian Nesterovs recommendation using multi-agent in social networks.

Due to increasing volume of big data the high volume of information in Social Network put a stop to users from acquiring serviceable information intelligently so many recommendation systems have emerged. Multi-agent Deep Learning gains rapid attraction, and the latest accomplishments address problems with real-world complexity. With big data precise recommendation has yet to be answered. In proposed work Deep Recurrent Gaussian Nesterov's Optimal Gradient (DR-GNOG) that combines deep learning with a multi-agent scenario for optimal and precise recommendation. The DR-GNOG is split into three layers, an input layer, two hidden layers and an output layer. The tweets obtained from the users are provided to the input layer by the Tweet Accumulator Agent. Then, in the first hidden layer, Tweet Classifier Agent performs optimized and relevant tweet classification by means of Gaussian Nesterov's Optimal Gradient model. In the second layer, a Deep Recurrent Predictive Recommendation model is designed to concentrate on the vanishing gradient issue arising due to updated tweets obtained from same user at different time instance. Finally, with the aid of hyperbolic activation function in the output layer, building block of the predictive recommendation is obtained. In the experimental study the proposed method is found better than existing GANCF and Bootstrapping method 13-21% in case of recommendation accuracy, 22-32% better in recommendation time and 15-22% better in recall rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolving Systems
Evolving Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.80
自引率
6.20%
发文量
67
期刊介绍: Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time). Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design. The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as Evolving Systems methodology Evolving Neural Networks and Neuro-fuzzy Systems Evolving Classifiers and Clustering Evolving Controllers and Predictive models Evolving Explainable AI systems Evolving Systems applications but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments. The journal is encompassing contributions related to: 1) Methods of machine learning, AI, computational intelligence and mathematical modelling 2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics 3) Applications in engineering, business, social sciences.
期刊最新文献
Feature-based search space characterisation for data-driven adaptive operator selection Image enhancement based on optimized 2D histogram modification by krill herd algorithm Csa-gru: a hybrid CNN and self attention GRU for human identification using ear biometrics Leader–follower tracking in lipschitz nonlinear multi agent systems under undirected graph with noisy sinusoidal motion of the leader Homogeneous transfer learning for supporting pervasive edge applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1