{"title":"代谢组学及其在辅助生殖技术中的应用","authors":"Jingying Gao, Yan Xiao","doi":"10.1049/nbt2.12141","DOIUrl":null,"url":null,"abstract":"<p>Metabolomics, an emerging omics technology developed in the post-gene age, is an important part of systems biology. It interprets the pathophysiological state of the subject by quantitatively describing the dynamic changes of metabolites through analytical methods, mainly mass spectrometry (MS) and nuclear magnetic resonance (NMR). Assisted reproductive technology (ART) is a method used to manipulate sperm, oocytes, and embryos to achieve conception. Recently, several studies have reported that metabolomics methods can be used to measure metabolites in ART samples; these metabolites can be used to evaluate the quality of gametes and embryos. This article reviews the progress of research on metabolomics and the application of this technology in the field of ART, thus providing a reference for research and development directions in the future.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"399-405"},"PeriodicalIF":3.8000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/24/NBT2-17-399.PMC10374554.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolomics and its applications in assisted reproductive technology\",\"authors\":\"Jingying Gao, Yan Xiao\",\"doi\":\"10.1049/nbt2.12141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metabolomics, an emerging omics technology developed in the post-gene age, is an important part of systems biology. It interprets the pathophysiological state of the subject by quantitatively describing the dynamic changes of metabolites through analytical methods, mainly mass spectrometry (MS) and nuclear magnetic resonance (NMR). Assisted reproductive technology (ART) is a method used to manipulate sperm, oocytes, and embryos to achieve conception. Recently, several studies have reported that metabolomics methods can be used to measure metabolites in ART samples; these metabolites can be used to evaluate the quality of gametes and embryos. This article reviews the progress of research on metabolomics and the application of this technology in the field of ART, thus providing a reference for research and development directions in the future.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 5\",\"pages\":\"399-405\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/24/NBT2-17-399.PMC10374554.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12141\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12141","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Metabolomics and its applications in assisted reproductive technology
Metabolomics, an emerging omics technology developed in the post-gene age, is an important part of systems biology. It interprets the pathophysiological state of the subject by quantitatively describing the dynamic changes of metabolites through analytical methods, mainly mass spectrometry (MS) and nuclear magnetic resonance (NMR). Assisted reproductive technology (ART) is a method used to manipulate sperm, oocytes, and embryos to achieve conception. Recently, several studies have reported that metabolomics methods can be used to measure metabolites in ART samples; these metabolites can be used to evaluate the quality of gametes and embryos. This article reviews the progress of research on metabolomics and the application of this technology in the field of ART, thus providing a reference for research and development directions in the future.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf