轴足黄单胞菌的程序性细胞死亡。甘氨酸与基因表达的调节有关,导致运动性、生物膜和毒力状态的改变。

IF 2.5 4区 生物学 Q3 MICROBIOLOGY Research in microbiology Pub Date : 2023-11-01 DOI:10.1016/j.resmic.2023.104137
Nilantana C. Bandyopadhyay , Satyendra Gautam
{"title":"轴足黄单胞菌的程序性细胞死亡。甘氨酸与基因表达的调节有关,导致运动性、生物膜和毒力状态的改变。","authors":"Nilantana C. Bandyopadhyay ,&nbsp;Satyendra Gautam","doi":"10.1016/j.resmic.2023.104137","DOIUrl":null,"url":null,"abstract":"<div><p>One of the foremost report of apoptosis-like programmed cell death (PCD) came from <span><em>Xanthomonas axonopodis</em></span><span> pv. glycines (Xag), which displayed rapid post-exponential cell death in PCD inducing media (PIM) but not in a non-inducing media (PNIM). The current study aims to decipher for the first time, the advantages of the existence of PCD in this phytopathogenic microorganism. Analysis of RNA-seq under inducing and non-inducing conditions, revealed differential expression of a number of genes related to key physiology of Xag, such as, motility, xanthan biosynthesis and export as well as virulence. A PCD negative mutant Xag M42 displayed diminished virulence and a contrasting transcriptome<span><span> pattern. In vitro experiments revealed that under PCD inducing condition, Xag produced negligible xanthan gum as well as extracellular amylase, displayed enhanced swarming motility, released copious e-DNA and formed scanty biofilm. Lack of ‘diffusible signalling factor’ production was eliminated as possible reason for PCD-induction. Altogether, it appears that, in planta existence of the pathogen metabolically resembles PNIM, and on being transferred to PIM, the cells experience </span>oxidative stress and circumvents it by adopting PCD as an altruistic response. Survival of the remaining population is encouraged by upregulating motility, detachment from the fragile biofilm to achieve dispersal.</span></span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 8","pages":"Article 104137"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmed cell death in Xanthomonas axonopodis pv. glycines is associated with modulation of gene expression resulting in altered states of motility, biofilm and virulence\",\"authors\":\"Nilantana C. Bandyopadhyay ,&nbsp;Satyendra Gautam\",\"doi\":\"10.1016/j.resmic.2023.104137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the foremost report of apoptosis-like programmed cell death (PCD) came from <span><em>Xanthomonas axonopodis</em></span><span> pv. glycines (Xag), which displayed rapid post-exponential cell death in PCD inducing media (PIM) but not in a non-inducing media (PNIM). The current study aims to decipher for the first time, the advantages of the existence of PCD in this phytopathogenic microorganism. Analysis of RNA-seq under inducing and non-inducing conditions, revealed differential expression of a number of genes related to key physiology of Xag, such as, motility, xanthan biosynthesis and export as well as virulence. A PCD negative mutant Xag M42 displayed diminished virulence and a contrasting transcriptome<span><span> pattern. In vitro experiments revealed that under PCD inducing condition, Xag produced negligible xanthan gum as well as extracellular amylase, displayed enhanced swarming motility, released copious e-DNA and formed scanty biofilm. Lack of ‘diffusible signalling factor’ production was eliminated as possible reason for PCD-induction. Altogether, it appears that, in planta existence of the pathogen metabolically resembles PNIM, and on being transferred to PIM, the cells experience </span>oxidative stress and circumvents it by adopting PCD as an altruistic response. Survival of the remaining population is encouraged by upregulating motility, detachment from the fragile biofilm to achieve dispersal.</span></span></p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"174 8\",\"pages\":\"Article 104137\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823001122\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823001122","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞凋亡样程序性细胞死亡(PCD)的最重要报道之一来自Xanthomonas axonopodis pv。甘氨酸(Xag),其在PCD诱导培养基(PIM)中表现出快速的指数后细胞死亡,但在非诱导培养基中没有。本研究旨在首次阐明PCD在这种植物病原微生物中存在的优势。在诱导和非诱导条件下对RNA-seq的分析显示,与Xag的关键生理学相关的许多基因的差异表达,如运动性、黄原胶生物合成和输出以及毒力。PCD阴性突变体Xag M42显示出降低的毒力和相反的转录组模式。体外实验表明,在PCD诱导条件下,Xag产生可忽略不计的黄原胶和细胞外淀粉酶,表现出增强的群集运动,释放大量的e-DNA,形成稀疏的生物膜。缺乏“可扩散信号因子”的产生被排除为PCD诱导的可能原因。总之,在植物中,病原体的存在在代谢上类似于PNIM,在转移到PIM时,细胞会经历氧化应激,并通过采用PCD作为利他反应来规避它。通过上调运动性、脱离脆弱的生物膜以实现扩散,鼓励剩余种群的生存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Programmed cell death in Xanthomonas axonopodis pv. glycines is associated with modulation of gene expression resulting in altered states of motility, biofilm and virulence

One of the foremost report of apoptosis-like programmed cell death (PCD) came from Xanthomonas axonopodis pv. glycines (Xag), which displayed rapid post-exponential cell death in PCD inducing media (PIM) but not in a non-inducing media (PNIM). The current study aims to decipher for the first time, the advantages of the existence of PCD in this phytopathogenic microorganism. Analysis of RNA-seq under inducing and non-inducing conditions, revealed differential expression of a number of genes related to key physiology of Xag, such as, motility, xanthan biosynthesis and export as well as virulence. A PCD negative mutant Xag M42 displayed diminished virulence and a contrasting transcriptome pattern. In vitro experiments revealed that under PCD inducing condition, Xag produced negligible xanthan gum as well as extracellular amylase, displayed enhanced swarming motility, released copious e-DNA and formed scanty biofilm. Lack of ‘diffusible signalling factor’ production was eliminated as possible reason for PCD-induction. Altogether, it appears that, in planta existence of the pathogen metabolically resembles PNIM, and on being transferred to PIM, the cells experience oxidative stress and circumvents it by adopting PCD as an altruistic response. Survival of the remaining population is encouraged by upregulating motility, detachment from the fragile biofilm to achieve dispersal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
期刊最新文献
Cutibacterium acnes and its complex host interaction in prosthetic joint infection: Current insights and future directions. Novel insights into Bacillus thuringiensis: Beyond its role as a bioinsecticide. Characterization and identification of Pseudomonas sp. AW4, an arsenic-resistant and plant growth-promoting bacteria isolated from the soybean (Glycine max L.) rhizosphere. The roots of the Institut Pasteur's "Grand Cours". Navigating dual-species fungal biofilms: The competitive and cooperative dynamics of Candidaalbicans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1