{"title":"纯移位编辑核磁共振方法的提取与超高分辨率的同核和异核耦合","authors":"Sandeep Kumar Mishra , N. Suryaprakash","doi":"10.1016/j.pnmrs.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend <em>inter alia</em> on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of <sup>1</sup>H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the <sup>1</sup>H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one‐dimensional and two‐dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one‐dimensional and two‐dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (<em><sup>n</sup>J</em><sub>HX</sub>, where <em>n</em> = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"136 ","pages":"Pages 1-60"},"PeriodicalIF":7.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure shift edited NMR methodologies for the extraction of Homo- and heteronuclear couplings with ultra-high resolution\",\"authors\":\"Sandeep Kumar Mishra , N. Suryaprakash\",\"doi\":\"10.1016/j.pnmrs.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend <em>inter alia</em> on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of <sup>1</sup>H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the <sup>1</sup>H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one‐dimensional and two‐dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one‐dimensional and two‐dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (<em><sup>n</sup>J</em><sub>HX</sub>, where <em>n</em> = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.</p></div>\",\"PeriodicalId\":20740,\"journal\":{\"name\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"volume\":\"136 \",\"pages\":\"Pages 1-60\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079656523000018\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656523000018","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pure shift edited NMR methodologies for the extraction of Homo- and heteronuclear couplings with ultra-high resolution
The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend inter alia on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of 1H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the 1H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one‐dimensional and two‐dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one‐dimensional and two‐dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (nJHX, where n = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.