{"title":"心理人工智能:根据人类心理学设计算法》(Psychological AI: Designing Algorithms Informed by Human Psychology)。","authors":"Gerd Gigerenzer","doi":"10.1177/17456916231180597","DOIUrl":null,"url":null,"abstract":"<p><p>Psychological artificial intelligence (AI) applies insights from psychology to design computer algorithms. Its core domain is decision-making under uncertainty, that is, ill-defined situations that can change in unexpected ways rather than well-defined, stable problems, such as chess and Go. Psychological theories about heuristic processes under uncertainty can provide possible insights. I provide two illustrations. The first shows how recency-the human tendency to rely on the most recent information and ignore base rates-can be built into a simple algorithm that predicts the flu substantially better than did Google Flu Trends's big-data algorithms. The second uses a result from memory research-the paradoxical effect that making numbers less precise increases recall-in the design of algorithms that predict recidivism. These case studies provide an existence proof that psychological AI can help design efficient and transparent algorithms.</p>","PeriodicalId":19757,"journal":{"name":"Perspectives on Psychological Science","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Psychological AI: Designing Algorithms Informed by Human Psychology.\",\"authors\":\"Gerd Gigerenzer\",\"doi\":\"10.1177/17456916231180597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psychological artificial intelligence (AI) applies insights from psychology to design computer algorithms. Its core domain is decision-making under uncertainty, that is, ill-defined situations that can change in unexpected ways rather than well-defined, stable problems, such as chess and Go. Psychological theories about heuristic processes under uncertainty can provide possible insights. I provide two illustrations. The first shows how recency-the human tendency to rely on the most recent information and ignore base rates-can be built into a simple algorithm that predicts the flu substantially better than did Google Flu Trends's big-data algorithms. The second uses a result from memory research-the paradoxical effect that making numbers less precise increases recall-in the design of algorithms that predict recidivism. These case studies provide an existence proof that psychological AI can help design efficient and transparent algorithms.</p>\",\"PeriodicalId\":19757,\"journal\":{\"name\":\"Perspectives on Psychological Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives on Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/17456916231180597\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives on Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/17456916231180597","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Psychological AI: Designing Algorithms Informed by Human Psychology.
Psychological artificial intelligence (AI) applies insights from psychology to design computer algorithms. Its core domain is decision-making under uncertainty, that is, ill-defined situations that can change in unexpected ways rather than well-defined, stable problems, such as chess and Go. Psychological theories about heuristic processes under uncertainty can provide possible insights. I provide two illustrations. The first shows how recency-the human tendency to rely on the most recent information and ignore base rates-can be built into a simple algorithm that predicts the flu substantially better than did Google Flu Trends's big-data algorithms. The second uses a result from memory research-the paradoxical effect that making numbers less precise increases recall-in the design of algorithms that predict recidivism. These case studies provide an existence proof that psychological AI can help design efficient and transparent algorithms.
期刊介绍:
Perspectives on Psychological Science is a journal that publishes a diverse range of articles and reports in the field of psychology. The journal includes broad integrative reviews, overviews of research programs, meta-analyses, theoretical statements, book reviews, and articles on various topics such as the philosophy of science and opinion pieces about major issues in the field. It also features autobiographical reflections of senior members of the field, occasional humorous essays and sketches, and even has a section for invited and submitted articles.
The impact of the journal can be seen through the reverberation of a 2009 article on correlative analyses commonly used in neuroimaging studies, which still influences the field. Additionally, a recent special issue of Perspectives, featuring prominent researchers discussing the "Next Big Questions in Psychology," is shaping the future trajectory of the discipline.
Perspectives on Psychological Science provides metrics that showcase the performance of the journal. However, the Association for Psychological Science, of which the journal is a signatory of DORA, recommends against using journal-based metrics for assessing individual scientist contributions, such as for hiring, promotion, or funding decisions. Therefore, the metrics provided by Perspectives on Psychological Science should only be used by those interested in evaluating the journal itself.