Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant
{"title":"Zn 缺乏会破坏衣藻中 Cu 和 S 的平衡,导致 Cu 和半胱氨酸过度积累。","authors":"Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant","doi":"10.1093/mtomcs/mfad043","DOIUrl":null,"url":null,"abstract":"<p><p>Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding \"first responder\" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine.\",\"authors\":\"Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant\",\"doi\":\"10.1093/mtomcs/mfad043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding \\\"first responder\\\" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad043\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
莱茵衣藻在锌(Zn)有限的培养基中生长会导致铜(Cu)平衡的破坏,导致铜的过量积累,与典型的铜配额相比,最高可达 40 倍。我们的研究表明,衣藻通过平衡铜的输入和输出来控制其铜配额,这种平衡在缺锌细胞中被破坏,从而建立了铜和锌平衡之间的机理联系。转录组学、蛋白质组学和元素分析表明,锌限制的衣藻细胞会上调编码参与硫(S)同化的 "第一反应器 "蛋白的基因子集,从而在细胞内积累更多的 S,并将其转化为 L-半胱氨酸、γ-谷氨酰半胱氨酸和高半胱氨酸。最显著的是,在缺乏锌的情况下,游离 L-半胱氨酸增加了 80 倍,相当于 2.8 × 109 个分子/细胞。有趣的是,谷胱甘肽和植物螯合素等典型的含 S 金属结合配体并没有增加。X 射线荧光显微镜显示,在锌限制的细胞中存在 S 积累的病灶,这些病灶与铜、磷和钙共定位,与 Cu(I)积累部位--酸性焦糖体中的 Cu-thiol 复合物一致。值得注意的是,先前缺乏 Cu 的细胞不会积累 S 或 Cys,这说明半胱氨酸的合成与 Cu 的积累有因果关系。我们认为,半胱氨酸是一种体内 Cu(I)配体,也许是一种祖传配体,它能缓冲细胞膜 Cu。
Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine.
Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.