生物属性本体(OBA)--生命科学的计算特征。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2023-09-01 Epub Date: 2023-04-19 DOI:10.1007/s00335-023-09992-1
Ray Stefancsik, James P Balhoff, Meghan A Balk, Robyn L Ball, Susan M Bello, Anita R Caron, Elissa J Chesler, Vinicius de Souza, Sarah Gehrke, Melissa Haendel, Laura W Harris, Nomi L Harris, Arwa Ibrahim, Sebastian Koehler, Nicolas Matentzoglu, Julie A McMurry, Christopher J Mungall, Monica C Munoz-Torres, Tim Putman, Peter Robinson, Damian Smedley, Elliot Sollis, Anne E Thessen, Nicole Vasilevsky, David O Walton, David Osumi-Sutherland
{"title":"生物属性本体(OBA)--生命科学的计算特征。","authors":"Ray Stefancsik, James P Balhoff, Meghan A Balk, Robyn L Ball, Susan M Bello, Anita R Caron, Elissa J Chesler, Vinicius de Souza, Sarah Gehrke, Melissa Haendel, Laura W Harris, Nomi L Harris, Arwa Ibrahim, Sebastian Koehler, Nicolas Matentzoglu, Julie A McMurry, Christopher J Mungall, Monica C Munoz-Torres, Tim Putman, Peter Robinson, Damian Smedley, Elliot Sollis, Anne E Thessen, Nicole Vasilevsky, David O Walton, David Osumi-Sutherland","doi":"10.1007/s00335-023-09992-1","DOIUrl":null,"url":null,"abstract":"<p><p>Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":"34 3","pages":"364-378"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382347/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Ontology of Biological Attributes (OBA)-computational traits for the life sciences.\",\"authors\":\"Ray Stefancsik, James P Balhoff, Meghan A Balk, Robyn L Ball, Susan M Bello, Anita R Caron, Elissa J Chesler, Vinicius de Souza, Sarah Gehrke, Melissa Haendel, Laura W Harris, Nomi L Harris, Arwa Ibrahim, Sebastian Koehler, Nicolas Matentzoglu, Julie A McMurry, Christopher J Mungall, Monica C Munoz-Torres, Tim Putman, Peter Robinson, Damian Smedley, Elliot Sollis, Anne E Thessen, Nicole Vasilevsky, David O Walton, David Osumi-Sutherland\",\"doi\":\"10.1007/s00335-023-09992-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\"34 3\",\"pages\":\"364-378\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382347/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-023-09992-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-09992-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现有的表型本体最初是为了表示与野生型或其他参照物相比表现为特征状态的表型而开发的。然而,这些表型并不包括全基因组关联研究(GWAS)、定量性状位点(QTL)映射或任何以群体为中心的可测量性状数据注释所需的表型性状或属性类别。将性状和生物属性信息与日益增多的化学、环境和生物数据整合在一起,大大方便了计算分析,同时也与生物医学和临床应用高度相关。生物属性本体(OBA)是一个正式的、独立于物种的、可互操作的表型特征类别集合,旨在发挥数据集成的作用。OBA 是一个标准化的表征框架,用于表征作为生物实体、生物体或生物体组成部分特征的可观测属性。OBA 采用模块化设计,可为用户和数据集成者带来多种好处,包括根据从特定领域本体论中为细胞、解剖学和其他相关实体得出的逻辑推理,自动对性状术语进行有意义的分类。OBA 中的逻辑公理还提供了一个以前缺失的桥梁,可以通过计算将孟德尔表型与 GWAS 和定量性状联系起来。OBA 中的术语组件提供了语义链接,实现了跨越专业研究界界限的知识和数据整合,从而打破了孤岛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Ontology of Biological Attributes (OBA)-computational traits for the life sciences.

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
Review on camel genetic diversity: ecological and economic perspectives. A map of canine sequence variation relative to a Greenland wolf outgroup. In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. Online Mendelian Inheritance in Animals (OMIA): a genetic resource for vertebrate animals. Identification of prostate cancer associated genes for diagnosis and prognosis: a modernized in silico approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1