Guangjian Zhang, Minami Hattori, Lauren A Trichtinger
{"title":"旋转因子以简化其结构路径。","authors":"Guangjian Zhang, Minami Hattori, Lauren A Trichtinger","doi":"10.1007/s11336-022-09877-3","DOIUrl":null,"url":null,"abstract":"<p><p>Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to \"translate\" an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotating Factors to Simplify Their Structural Paths.\",\"authors\":\"Guangjian Zhang, Minami Hattori, Lauren A Trichtinger\",\"doi\":\"10.1007/s11336-022-09877-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to \\\"translate\\\" an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-022-09877-3\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09877-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Rotating Factors to Simplify Their Structural Paths.
Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to "translate" an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.