SAGA 组蛋白乙酰转移酶模块将 SMC5/6 靶向特定基因。

IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Epigenetics & Chromatin Pub Date : 2023-02-16 DOI:10.1186/s13072-023-00480-z
L Mahrik, B Stefanovie, A Maresova, J Princova, P Kolesar, E Lelkes, C Faux, D Helmlinger, M Prevorovsky, J J Palecek
{"title":"SAGA 组蛋白乙酰转移酶模块将 SMC5/6 靶向特定基因。","authors":"L Mahrik, B Stefanovie, A Maresova, J Princova, P Kolesar, E Lelkes, C Faux, D Helmlinger, M Prevorovsky, J J Palecek","doi":"10.1186/s13072-023-00480-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin.</p><p><strong>Results: </strong>We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant.</p><p><strong>Conclusion: </strong>Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933293/pdf/","citationCount":"0","resultStr":"{\"title\":\"The SAGA histone acetyltransferase module targets SMC5/6 to specific genes.\",\"authors\":\"L Mahrik, B Stefanovie, A Maresova, J Princova, P Kolesar, E Lelkes, C Faux, D Helmlinger, M Prevorovsky, J J Palecek\",\"doi\":\"10.1186/s13072-023-00480-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin.</p><p><strong>Results: </strong>We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant.</p><p><strong>Conclusion: </strong>Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-023-00480-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00480-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:染色体结构维护(SMC)复合物是在较高水平上驱动染色质组织的分子机器。在真核生物中,三种 SMC 复合物(凝聚素、凝结素和 SMC5/6)在内聚、凝结、复制、转录和 DNA 修复中发挥着关键作用。它们与 DNA 的物理结合需要可访问的染色质:我们在裂殖酵母中进行了基因筛选,以确定 SMC5/6 与 DNA 结合所需的新因子。我们确定了 79 个基因,其中组蛋白乙酰转移酶(HATs)的代表性最强。遗传和表型分析表明,SMC5/6 和 SAGA 复合物之间的功能关系特别密切。此外,几个 SMC5/6 亚基与 SAGA HAT 模块元件 Gcn5 和 Ada2 有物理相互作用。由于依赖于 Gcn5 的乙酰化促进了染色质对 DNA 修复蛋白的可及性,我们首先分析了 DNA 损伤诱导的 SMC5/6 病灶在 Δgcn5 突变体中的形成情况。在Δgcn5中,SMC5/6病灶正常形成,这表明SMC5/6在DNA损伤位点的定位不依赖于SAGA。接下来,我们使用 Nse4-FLAG 染色质免疫沉淀(ChIP-seq)分析法评估 SMC5/6 在未受挑战细胞中的分布。在野生型细胞中,SMC5/6的很大一部分积聚在基因区域内,而在Δgcn5和Δada2突变体中则减少了。在gcn5-E191Q乙酰转移酶致死突变体中也观察到了SMC5/6水平的下降:我们的数据显示了 SMC5/6 和 SAGA 复合物之间的遗传和物理相互作用。ChIP-seq 分析表明,SAGA HAT 模块将 SMC5/6 靶向特定的基因区域,并促进 SMC5/6 加载基因区域的可及性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The SAGA histone acetyltransferase module targets SMC5/6 to specific genes.

Background: Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin.

Results: We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant.

Conclusion: Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
期刊最新文献
Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages. H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity. PRKACB is a novel imprinted gene in marsupials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1