{"title":"奥曲肽对wistar大鼠的神经保护、抗惊厥和抗焦虑作用。","authors":"Tahereh Karimi Shayan , Arash Abdolmaleki , Asadollah Asadi , Hossein Hassanpour","doi":"10.1016/j.jchemneu.2023.102320","DOIUrl":null,"url":null,"abstract":"<div><p>Somatostatin<span><span><span> interneurons<span> exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide<span>, a somatostatin analog, on </span></span></span>pentylenetetrazol<span> (PTZ)-induced seizures in male Wistar rats<span><span><span>. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than </span>diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed </span>neuronal apoptosis and attenuated </span></span></span>oxidative stress<span>. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.</span></span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"132 ","pages":"Article 102320"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective anticonvulsant and anxiolytic effects of octreotide in wistar rats\",\"authors\":\"Tahereh Karimi Shayan , Arash Abdolmaleki , Asadollah Asadi , Hossein Hassanpour\",\"doi\":\"10.1016/j.jchemneu.2023.102320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Somatostatin<span><span><span> interneurons<span> exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide<span>, a somatostatin analog, on </span></span></span>pentylenetetrazol<span> (PTZ)-induced seizures in male Wistar rats<span><span><span>. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than </span>diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed </span>neuronal apoptosis and attenuated </span></span></span>oxidative stress<span>. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.</span></span></p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"132 \",\"pages\":\"Article 102320\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089106182300090X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089106182300090X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuroprotective anticonvulsant and anxiolytic effects of octreotide in wistar rats
Somatostatin interneurons exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide, a somatostatin analog, on pentylenetetrazol (PTZ)-induced seizures in male Wistar rats. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed neuronal apoptosis and attenuated oxidative stress. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.