声液滴蒸发中的气泡成核和动力学:概念、应用和新方向综述。

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-08-01 DOI:10.1016/j.zemedi.2023.01.004
Mitra Aliabouzar , Oliver D. Kripfgans , J. Brian Fowlkes , Mario L. Fabiilli
{"title":"声液滴蒸发中的气泡成核和动力学:概念、应用和新方向综述。","authors":"Mitra Aliabouzar ,&nbsp;Oliver D. Kripfgans ,&nbsp;J. Brian Fowlkes ,&nbsp;Mario L. Fabiilli","doi":"10.1016/j.zemedi.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as <em>in situ</em> microrheology and pressure estimation.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"33 3","pages":"Pages 387-406"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/28/main.PMC10517405.pdf","citationCount":"7","resultStr":"{\"title\":\"Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions\",\"authors\":\"Mitra Aliabouzar ,&nbsp;Oliver D. Kripfgans ,&nbsp;J. Brian Fowlkes ,&nbsp;Mario L. Fabiilli\",\"doi\":\"10.1016/j.zemedi.2023.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as <em>in situ</em> microrheology and pressure estimation.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"33 3\",\"pages\":\"Pages 387-406\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/28/main.PMC10517405.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000041\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 7

摘要

相移液滴的发展拓宽了基于超声的生物医学应用范围。当受到足够的声压时,相移液滴中的全氟碳相经历向气态的相变。这种现象被称为声液滴蒸发(ADV),在过去二十年中一直是大量研究的主题,在相移液滴的设计、气泡成核和动力学的基本物理以及应用方面取得了巨大进展。在这里,我们回顾了通过高速显微镜进行的实验方法,以及为研究ADV的基本物理而提出的理论模型,包括蒸汽成核和ADV诱导的气泡动力学。此外,我们强调了ADV在组织再生中的新进展,这是一种相对较新的应用。我们总结了ADV在现场微流变学和压力估算等高级应用方面的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions

The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as in situ microrheology and pressure estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1