Pengfei Song , Jonathan M. Rubin , Matthew R. Lowerison
{"title":"超分辨率超声微血管成像:它准备好用于临床了吗?","authors":"Pengfei Song , Jonathan M. Rubin , Matthew R. Lowerison","doi":"10.1016/j.zemedi.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first <em>in vivo</em> imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"33 3","pages":"Pages 309-323"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/16/c5/main.PMC10517403.pdf","citationCount":"5","resultStr":"{\"title\":\"Super-resolution ultrasound microvascular imaging: Is it ready for clinical use?\",\"authors\":\"Pengfei Song , Jonathan M. Rubin , Matthew R. Lowerison\",\"doi\":\"10.1016/j.zemedi.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first <em>in vivo</em> imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"33 3\",\"pages\":\"Pages 309-323\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/16/c5/main.PMC10517403.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000430\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000430","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Super-resolution ultrasound microvascular imaging: Is it ready for clinical use?
The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first in vivo imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.