SARS-CoV-2减毒鼻用疫苗对黏膜免疫的改善作用

IF 5.7 2区 医学 Q1 VIROLOGY Current opinion in virology Pub Date : 2023-10-01 DOI:10.1016/j.coviro.2023.101347
Jason Yeung , Tian Wang , Pei-Yong Shi
{"title":"SARS-CoV-2减毒鼻用疫苗对黏膜免疫的改善作用","authors":"Jason Yeung ,&nbsp;Tian Wang ,&nbsp;Pei-Yong Shi","doi":"10.1016/j.coviro.2023.101347","DOIUrl":null,"url":null,"abstract":"<div><p>The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101347"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine\",\"authors\":\"Jason Yeung ,&nbsp;Tian Wang ,&nbsp;Pei-Yong Shi\",\"doi\":\"10.1016/j.coviro.2023.101347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":\"62 \",\"pages\":\"Article 101347\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879625723000470\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625723000470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

早期新冠肺炎疫苗在降低疾病严重程度方面的有效性导致人们关注开发能够预防病毒感染和传播的下一代疫苗。一种有前景的方法是通过鼻腔给药诱导粘膜免疫,目前正在开发使用不同平台的各种粘膜候选疫苗。减毒活病毒是严重急性呼吸系统综合征冠状病毒2型的低致病性版本,作为粘膜疫苗平台具有很有前景的特点,并有可能在已经接种信使核糖核酸疫苗的个体中诱导混合免疫。这篇综述讨论了使用减毒活的严重急性呼吸系统综合征冠状病毒2型鼻内疫苗的潜在益处和注意事项,并强调了作者在开发此类疫苗平台方面的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine

The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
期刊最新文献
Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities. Advancing zoonotic respiratory virus research through the use of organoids. Editorial Board Koala retrovirus and neoplasia: correlation and underlying mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1