Patricia Maraver, Carolina Tecuatl, Giorgio A Ascoli
{"title":"描述神经形态学数字重建的科学出版物的自动识别。","authors":"Patricia Maraver, Carolina Tecuatl, Giorgio A Ascoli","doi":"10.1186/s40708-023-00202-x","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, NeuroMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 potentially relevant articles per year to identify data of interest. Here, we describe a tool that uses natural language processing and deep learning to assess the likelihood of a publication to be relevant for the project. The tool automatically identifies articles describing digitally reconstructed neural morphologies with high accuracy. Its processing rate of 900 publications per hour is not only amply sufficient to autonomously track new research, but also allowed the successful evaluation of older publications backlogged due to limited human resources. The number of bio-entities found since launching the tool almost doubled while greatly reducing manual labor. The classification tool is open source, configurable, and simple to use, making it extensible to other biocuration projects.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491540/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic identification of scientific publications describing digital reconstructions of neural morphology.\",\"authors\":\"Patricia Maraver, Carolina Tecuatl, Giorgio A Ascoli\",\"doi\":\"10.1186/s40708-023-00202-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, NeuroMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 potentially relevant articles per year to identify data of interest. Here, we describe a tool that uses natural language processing and deep learning to assess the likelihood of a publication to be relevant for the project. The tool automatically identifies articles describing digitally reconstructed neural morphologies with high accuracy. Its processing rate of 900 publications per hour is not only amply sufficient to autonomously track new research, but also allowed the successful evaluation of older publications backlogged due to limited human resources. The number of bio-entities found since launching the tool almost doubled while greatly reducing manual labor. The classification tool is open source, configurable, and simple to use, making it extensible to other biocuration projects.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491540/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00202-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00202-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Automatic identification of scientific publications describing digital reconstructions of neural morphology.
The increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, NeuroMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 potentially relevant articles per year to identify data of interest. Here, we describe a tool that uses natural language processing and deep learning to assess the likelihood of a publication to be relevant for the project. The tool automatically identifies articles describing digitally reconstructed neural morphologies with high accuracy. Its processing rate of 900 publications per hour is not only amply sufficient to autonomously track new research, but also allowed the successful evaluation of older publications backlogged due to limited human resources. The number of bio-entities found since launching the tool almost doubled while greatly reducing manual labor. The classification tool is open source, configurable, and simple to use, making it extensible to other biocuration projects.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing