Wei Lai, Yongjie Xu, Lin Liu, Huijun Cao, Bin Yang, Jie Luo, Ying Fei
{"title":"不对称PCR和多重横向流动条带同时视觉检测KPC和NDM碳青霉烯酶编码基因。","authors":"Wei Lai, Yongjie Xu, Lin Liu, Huijun Cao, Bin Yang, Jie Luo, Ying Fei","doi":"10.1155/2023/9975620","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant <i>Enterobacteriaceae</i> (CRE) infections constitute a threat to public health, and KPC and NDM are the major carbapenemases of concern. Rapid diagnostic tests are highly desirable in point-of-care (POC) and emergency laboratories with limited resources. Here, we developed a multiplex lateral flow assay based on asymmetric PCR and barcode capture probes for the simultaneous detection of KPC-2 and NDM-1. Biotinylated barcode capture probes corresponding to the KPC-2 and NDM-1 genes were designed and cast onto two different sensing zones of a nitrocellulose membrane after reacting with streptavidin to prepare a multiplex lateral flow strip. Streptavidin-coated gold nanoparticles (SA-AuNPs) were used as signal reporters. In response to the target carbapenemase genes, biotin-labelled ssDNA libraries were produced by asymmetric PCR, which bond to SA-AuNPs via biotin and hybridise with the barcode capture probe via a complementary sequence, thereby bridging SA-AuNPs and the barcode capture probe to form visible red lines on the detection zones. The signal intensities were proportional to the number of resistance genes tested. The strip sensor showed detection limits of 0.03 pM for the KPC-2 and 0.07 pM for NDM-1 genes, respectively, and could accurately distinguish between KPC-2 and NDM-1 genes in CRE strains. For the genotyping of clinical isolates, our strip exhibited excellent consistency with real-time fluorescent quantitative PCR and gene sequencing. Given its simplicity, cost-effectiveness, and rapid analysis accomplished by the naked eye, the multiplex strip is promising auxiliary diagnostic tool for KPC-2 and NDM-1 producers in routine clinical laboratories.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2023 ","pages":"9975620"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simultaneous and Visual Detection of KPC and NDM Carbapenemase-Encoding Genes Using Asymmetric PCR and Multiplex Lateral Flow Strip.\",\"authors\":\"Wei Lai, Yongjie Xu, Lin Liu, Huijun Cao, Bin Yang, Jie Luo, Ying Fei\",\"doi\":\"10.1155/2023/9975620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbapenem-resistant <i>Enterobacteriaceae</i> (CRE) infections constitute a threat to public health, and KPC and NDM are the major carbapenemases of concern. Rapid diagnostic tests are highly desirable in point-of-care (POC) and emergency laboratories with limited resources. Here, we developed a multiplex lateral flow assay based on asymmetric PCR and barcode capture probes for the simultaneous detection of KPC-2 and NDM-1. Biotinylated barcode capture probes corresponding to the KPC-2 and NDM-1 genes were designed and cast onto two different sensing zones of a nitrocellulose membrane after reacting with streptavidin to prepare a multiplex lateral flow strip. Streptavidin-coated gold nanoparticles (SA-AuNPs) were used as signal reporters. In response to the target carbapenemase genes, biotin-labelled ssDNA libraries were produced by asymmetric PCR, which bond to SA-AuNPs via biotin and hybridise with the barcode capture probe via a complementary sequence, thereby bridging SA-AuNPs and the barcode capture probe to form visible red lines on the detection zones. The signal intensities were proportional to the number of resistance genes tested. The strip sensor showed detection limits of 0.03 pM for the KPC-2 and 0.07 pM for NDM-1 genes, respectively, and could accurately distinguish between KPC-2 and NDM-1 genes in CRE strains. For the genotyping of clinical isolates, our strip exhibited excellent consistency with real-time fluorescent quantitative PCR and gene sequencing. Given its simplicity, cost-effectiveness, and rapid analysis accomplished by the naked eye, the multiplex strip is promising auxiliary diagnostic tool for KPC-2 and NDM-1 producers in routine clinical laboratories.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":\"2023 \",\"pages\":\"9975620\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9975620\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/9975620","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Simultaneous and Visual Detection of KPC and NDM Carbapenemase-Encoding Genes Using Asymmetric PCR and Multiplex Lateral Flow Strip.
Carbapenem-resistant Enterobacteriaceae (CRE) infections constitute a threat to public health, and KPC and NDM are the major carbapenemases of concern. Rapid diagnostic tests are highly desirable in point-of-care (POC) and emergency laboratories with limited resources. Here, we developed a multiplex lateral flow assay based on asymmetric PCR and barcode capture probes for the simultaneous detection of KPC-2 and NDM-1. Biotinylated barcode capture probes corresponding to the KPC-2 and NDM-1 genes were designed and cast onto two different sensing zones of a nitrocellulose membrane after reacting with streptavidin to prepare a multiplex lateral flow strip. Streptavidin-coated gold nanoparticles (SA-AuNPs) were used as signal reporters. In response to the target carbapenemase genes, biotin-labelled ssDNA libraries were produced by asymmetric PCR, which bond to SA-AuNPs via biotin and hybridise with the barcode capture probe via a complementary sequence, thereby bridging SA-AuNPs and the barcode capture probe to form visible red lines on the detection zones. The signal intensities were proportional to the number of resistance genes tested. The strip sensor showed detection limits of 0.03 pM for the KPC-2 and 0.07 pM for NDM-1 genes, respectively, and could accurately distinguish between KPC-2 and NDM-1 genes in CRE strains. For the genotyping of clinical isolates, our strip exhibited excellent consistency with real-time fluorescent quantitative PCR and gene sequencing. Given its simplicity, cost-effectiveness, and rapid analysis accomplished by the naked eye, the multiplex strip is promising auxiliary diagnostic tool for KPC-2 and NDM-1 producers in routine clinical laboratories.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.