Christopher G Hubert, Shaun R Stauffer, Justin D Lathia
{"title":"癌症表观遗传干细胞维持和化疗耐药性的TOX-ic轴。","authors":"Christopher G Hubert, Shaun R Stauffer, Justin D Lathia","doi":"10.1371/journal.pbio.3002295","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer stem cells drive tumor growth and survival via self-renewal and therapeutic resistance, but the upstream mechanisms are not well defined. In this issue of PLOS Biology, a study in colon cancer reveals a new signalling network that links epigenetic regulation to these phenotypes.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503703/pdf/","citationCount":"0","resultStr":"{\"title\":\"A TOX-ic axis of epigenetic stem cell maintenance and chemoresistance in colon cancer.\",\"authors\":\"Christopher G Hubert, Shaun R Stauffer, Justin D Lathia\",\"doi\":\"10.1371/journal.pbio.3002295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer stem cells drive tumor growth and survival via self-renewal and therapeutic resistance, but the upstream mechanisms are not well defined. In this issue of PLOS Biology, a study in colon cancer reveals a new signalling network that links epigenetic regulation to these phenotypes.</p>\",\"PeriodicalId\":20240,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002295\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002295","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A TOX-ic axis of epigenetic stem cell maintenance and chemoresistance in colon cancer.
Cancer stem cells drive tumor growth and survival via self-renewal and therapeutic resistance, but the upstream mechanisms are not well defined. In this issue of PLOS Biology, a study in colon cancer reveals a new signalling network that links epigenetic regulation to these phenotypes.
期刊介绍:
PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly.
ISSN Numbers:
eISSN: 1545-7885
ISSN: 1544-9173