{"title":"高固相嗜热性AnMBR处理食物垃圾的膜过滤及清洗策略优化","authors":"Mengmeng Jiang , Jiu Huang , Peng Li , Bridget Ataa , Jinheng Gu , Zhiyue Wu , Wei Qiao","doi":"10.1016/j.chemosphere.2023.140151","DOIUrl":null,"url":null,"abstract":"<div><p><span>Anaerobic membrane bioreactor<span> is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m</span></span><sup>3</sup>·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m<sup>2</sup><span>·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.</span></p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"342 ","pages":"Article 140151"},"PeriodicalIF":8.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste\",\"authors\":\"Mengmeng Jiang , Jiu Huang , Peng Li , Bridget Ataa , Jinheng Gu , Zhiyue Wu , Wei Qiao\",\"doi\":\"10.1016/j.chemosphere.2023.140151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Anaerobic membrane bioreactor<span> is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m</span></span><sup>3</sup>·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m<sup>2</sup><span>·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.</span></p></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"342 \",\"pages\":\"Article 140151\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653523024219\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653523024219","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste
Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.