Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi
{"title":"小鼠模型中产生抗水通道蛋白5自身抗体的要求。","authors":"Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi","doi":"10.1111/omi.12430","DOIUrl":null,"url":null,"abstract":"<p><p>Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 \"E\" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4<sup>+</sup> T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"442-453"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Requirements for anti-aquaporin 5 autoantibody production in a mouse model.\",\"authors\":\"Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi\",\"doi\":\"10.1111/omi.12430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 \\\"E\\\" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4<sup>+</sup> T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":\" \",\"pages\":\"442-453\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12430\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Requirements for anti-aquaporin 5 autoantibody production in a mouse model.
Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 "E" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4+ T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.