粗略随机波动模型对长期人寿保险定价的影响。

IF 0.8 Q4 BUSINESS, FINANCE European Actuarial Journal Pub Date : 2023-01-01 Epub Date: 2022-06-25 DOI:10.1007/s13385-022-00317-1
Jean-Loup Dupret, Jérôme Barbarin, Donatien Hainaut
{"title":"粗略随机波动模型对长期人寿保险定价的影响。","authors":"Jean-Loup Dupret, Jérôme Barbarin, Donatien Hainaut","doi":"10.1007/s13385-022-00317-1","DOIUrl":null,"url":null,"abstract":"<p><p>The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of rough stochastic volatility models on long-term life insurance pricing.\",\"authors\":\"Jean-Loup Dupret, Jérôme Barbarin, Donatien Hainaut\",\"doi\":\"10.1007/s13385-022-00317-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.</p>\",\"PeriodicalId\":44305,\"journal\":{\"name\":\"European Actuarial Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13385-022-00317-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-022-00317-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

Gatheral 等人(Quant Financ 18(6):933-949, 2014)的粗略分数随机波动率(RFSV)模型与过去波动率数据的金融时间序列以及观察到的隐含波动率表面非常一致。从 RFSV 与 Bayer 等人的 rBergomi 模型(Quant Financ 16(6):887-904, 2016)和 El Euch 等人的粗略 Heston 模型(Risk 84-89, 2019)得出了两个可行的实现方法。现在,我们实际展示了如何在更大的时间尺度上扩展这两个粗略波动率模型,我们分析了它们对长期人寿保险合同定价的影响,并解释了为什么它们能为此类长期合约提供更准确的公允价值。我们特别强调并研究了这两个粗略波动率模型的长期特性,并将它们与标准随机波动率模型(如赫斯顿模型和贝茨模型)进行了比较。对于粗略的赫斯顿模型,我们设法建立了一个高度一致的校准和定价方法,其基础是大到期日波动率的稳定机制。这确保了模型在长期内的合理行为。关于 rBergomi,我们发现该模型并没有表现出切合实际的长期波动性,在大时间尺度上波动非常大。我们还发现,rBergomi 模型的校准速度不够快,而粗糙的 Heston 模型则非常容易校准。因此,与标准随机波动率模型相比,粗略赫斯顿模型能有效地为嵌入路径依赖期权的长期人寿保险合同提供更准确的公允价值,同时与历史数据和风险中性数据高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of rough stochastic volatility models on long-term life insurance pricing.

The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant Financ 18(6):933-949, 2014) is remarkably consistent with financial time series of past volatility data as well as with the observed implied volatility surface. Two tractable implementations are derived from the RFSV with the rBergomi model of Bayer et al. (Quant Financ 16(6):887-904, 2016) and the rough Heston model of El Euch et al. (Risk 84-89, 2019). We now show practically how to expand these two rough volatility models at larger time scales, we analyze their implications for the pricing of long-term life insurance contracts and we explain why they provide a more accurate fair value of such long-term contacts. In particular, we highlight and study the long-term properties of these two rough volatility models and compare them with standard stochastic volatility models such as the Heston and Bates models. For the rough Heston, we manage to build a highly consistent calibration and pricing methodology based on a stable regime for the volatility at large maturity. This ensures a reasonable behavior of the model in the long run. Concerning the rBergomi, we show that this model does not exhibit a realistic long-term volatility with extremely large swings at large time scales. We also show that this rBergomi is not fast enough for calibration purposes, unlike the rough Heston which is highly tractable. Compared to standard stochastic volatility models, the rough Heston hence provides efficiently a more accurate fair value of long-term life insurance contracts embedding path-dependent options while being highly consistent with historical and risk-neutral data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Actuarial Journal
European Actuarial Journal BUSINESS, FINANCE-
CiteScore
2.30
自引率
8.30%
发文量
35
期刊介绍: Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.
期刊最新文献
Hybrid life insurance valuation based on a new standard deviation premium principle in a stochastic interest rate framework Dataset of an actual motor vehicle insurance portfolio Bayesian credibility model with heavy tail random variables: calibration of the prior and application to natural disasters and cyber insurance Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method Robust asymptotic insurance-finance arbitrage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1