混合格式项目的混合序列 IRT 模型。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2023-06-01 Epub Date: 2023-03-17 DOI:10.1177/01466216231165302
Junhuan Wei, Yan Cai, Dongbo Tu
{"title":"混合格式项目的混合序列 IRT 模型。","authors":"Junhuan Wei, Yan Cai, Dongbo Tu","doi":"10.1177/01466216231165302","DOIUrl":null,"url":null,"abstract":"<p><p>To provide more insight into an individual's response process and cognitive process, this study proposed three mixed sequential item response models (MS-IRMs) for mixed-format items consisting of a mixture of a multiple-choice item and an open-ended item that emphasize a sequential response process and are scored sequentially. Relative to existing polytomous models such as the graded response model (GRM), generalized partial credit model (GPCM), or traditional sequential Rasch model (SRM), the proposed models employ an appropriate processing function for each task to improve conventional polytomous models. Simulation studies were carried out to investigate the performance of the proposed models, and the results indicated that all proposed models outperformed the SRM, GRM, and GPCM in terms of parameter recovery and model fit. An application illustration of the MS-IRMs in comparison with traditional models was demonstrated by using real data from TIMSS 2007.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"47 4","pages":"259-274"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240568/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Mixed Sequential IRT Model for Mixed-Format Items.\",\"authors\":\"Junhuan Wei, Yan Cai, Dongbo Tu\",\"doi\":\"10.1177/01466216231165302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To provide more insight into an individual's response process and cognitive process, this study proposed three mixed sequential item response models (MS-IRMs) for mixed-format items consisting of a mixture of a multiple-choice item and an open-ended item that emphasize a sequential response process and are scored sequentially. Relative to existing polytomous models such as the graded response model (GRM), generalized partial credit model (GPCM), or traditional sequential Rasch model (SRM), the proposed models employ an appropriate processing function for each task to improve conventional polytomous models. Simulation studies were carried out to investigate the performance of the proposed models, and the results indicated that all proposed models outperformed the SRM, GRM, and GPCM in terms of parameter recovery and model fit. An application illustration of the MS-IRMs in comparison with traditional models was demonstrated by using real data from TIMSS 2007.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\"47 4\",\"pages\":\"259-274\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216231165302\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216231165302","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了更深入地了解个体的反应过程和认知过程,本研究提出了三种混合序列项目反应模型(MS-IRM),适用于由选择题和开放题混合组成的混合格式项目,这些项目强调序列反应过程并按序列计分。相对于现有的多项式模型,如分级反应模型(GRM)、广义部分学分模型(GPCM)或传统的序列拉希模型(SRM),所提出的模型为每个任务采用了适当的处理函数,以改进传统的多项式模型。研究人员进行了仿真研究以考察所提模型的性能,结果表明,所有所提模型在参数恢复和模型拟合方面均优于 SRM、GRM 和 GPCM。通过使用 TIMSS 2007 的真实数据,展示了 MS-IRM 与传统模型的应用比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Mixed Sequential IRT Model for Mixed-Format Items.

To provide more insight into an individual's response process and cognitive process, this study proposed three mixed sequential item response models (MS-IRMs) for mixed-format items consisting of a mixture of a multiple-choice item and an open-ended item that emphasize a sequential response process and are scored sequentially. Relative to existing polytomous models such as the graded response model (GRM), generalized partial credit model (GPCM), or traditional sequential Rasch model (SRM), the proposed models employ an appropriate processing function for each task to improve conventional polytomous models. Simulation studies were carried out to investigate the performance of the proposed models, and the results indicated that all proposed models outperformed the SRM, GRM, and GPCM in terms of parameter recovery and model fit. An application illustration of the MS-IRMs in comparison with traditional models was demonstrated by using real data from TIMSS 2007.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1