酵母老化模型中的长链非编码RNA和核糖体蛋白基因:本科生研究型学习的调查。

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Essays in biochemistry Pub Date : 2023-09-13 DOI:10.1042/EBC20230010
Gwo-Jiunn H Hwang, Rosemary K Clyne
{"title":"酵母老化模型中的长链非编码RNA和核糖体蛋白基因:本科生研究型学习的调查。","authors":"Gwo-Jiunn H Hwang,&nbsp;Rosemary K Clyne","doi":"10.1042/EBC20230010","DOIUrl":null,"url":null,"abstract":"<p><p>The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 5","pages":"893-901"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long non-coding RNA and ribosomal protein genes in a yeast ageing model: an investigation for undergraduate research-based learning.\",\"authors\":\"Gwo-Jiunn H Hwang,&nbsp;Rosemary K Clyne\",\"doi\":\"10.1042/EBC20230010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\"67 5\",\"pages\":\"893-901\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20230010\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞酵母菌(酿酒酵母菌)和裂糖酵母菌(pombe Schizosaccharomyces)是应用广泛的真核模式生物。利用这些模型系统的可追溯性的研究对我们对广泛的基本过程的理解做出了重大贡献。在这篇文章中,我们概述了酵母的特征,这些特征同样被用于本科研究训练。我们从已发表的文献中选择了一些例子,这些文献展示了酵母系统在课程中嵌入的研究性学习中的效用。我们进一步描述了我们为跨国联合项目团队设计的一个项目,该项目研究了出芽酵母RPL36核糖体蛋白的表达和功能是否受到重叠的长链非编码RNA基因的影响。学生在2周的教学时间内进行实验,并练习广泛应用的生化技术,包括无菌酵母细胞培养和样品收集,RNA分离,qRT-PCR定量,蛋白质提取和Western blot分析,以及使用光镜和流式细胞术的细胞周期进程模式。为本科生设计有意义、实用和经济的培训项目是一项挑战,但将活跃的研究项目转化为真实的研究经验是可能的。我们认为酵母是这类项目的理想模式生物。这些可以适应课程安排的限制,并探索从酵母到哺乳动物进化保守的基本生化主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long non-coding RNA and ribosomal protein genes in a yeast ageing model: an investigation for undergraduate research-based learning.

The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
期刊最新文献
NUAK: never underestimate a kinase. New developments in AMPK and mTORC1 cross-talk. How mass spectrometry can be exploited to study AMPK. New concepts in the roles of AMPK in adipocyte stem cell biology. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1