{"title":"“超协变量”:在随机临床试验中使用预测的对照组结果作为协变量。","authors":"Björn Holzhauer, Emmanuel Taiwo Adewuyi","doi":"10.1002/pst.2329","DOIUrl":null,"url":null,"abstract":"<p><p>The power of randomized controlled clinical trials to demonstrate the efficacy of a drug compared with a control group depends not just on how efficacious the drug is, but also on the variation in patients' outcomes. Adjusting for prognostic covariates during trial analysis can reduce this variation. For this reason, the primary statistical analysis of a clinical trial is often based on regression models that besides terms for treatment and some further terms (e.g., stratification factors used in the randomization scheme of the trial) also includes a baseline (pre-treatment) assessment of the primary outcome. We suggest to include a \"super-covariate\"-that is, a patient-specific prediction of the control group outcome-as a further covariate (but not as an offset). We train a prognostic model or ensembles of such models on the individual patient (or aggregate) data of other studies in similar patients, but not the new trial under analysis. This has the potential to use historical data to increase the power of clinical trials and avoids the concern of type I error inflation with Bayesian approaches, but in contrast to them has a greater benefit for larger sample sizes. It is important for prognostic models behind \"super-covariates\" to generalize well across different patient populations in order to similarly reduce unexplained variability whether the trial(s) to develop the model are identical to the new trial or not. In an example in neovascular age-related macular degeneration we saw efficiency gains from the use of a \"super-covariate\".</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Super-covariates\\\": Using predicted control group outcome as a covariate in randomized clinical trials.\",\"authors\":\"Björn Holzhauer, Emmanuel Taiwo Adewuyi\",\"doi\":\"10.1002/pst.2329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The power of randomized controlled clinical trials to demonstrate the efficacy of a drug compared with a control group depends not just on how efficacious the drug is, but also on the variation in patients' outcomes. Adjusting for prognostic covariates during trial analysis can reduce this variation. For this reason, the primary statistical analysis of a clinical trial is often based on regression models that besides terms for treatment and some further terms (e.g., stratification factors used in the randomization scheme of the trial) also includes a baseline (pre-treatment) assessment of the primary outcome. We suggest to include a \\\"super-covariate\\\"-that is, a patient-specific prediction of the control group outcome-as a further covariate (but not as an offset). We train a prognostic model or ensembles of such models on the individual patient (or aggregate) data of other studies in similar patients, but not the new trial under analysis. This has the potential to use historical data to increase the power of clinical trials and avoids the concern of type I error inflation with Bayesian approaches, but in contrast to them has a greater benefit for larger sample sizes. It is important for prognostic models behind \\\"super-covariates\\\" to generalize well across different patient populations in order to similarly reduce unexplained variability whether the trial(s) to develop the model are identical to the new trial or not. In an example in neovascular age-related macular degeneration we saw efficiency gains from the use of a \\\"super-covariate\\\".</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2329\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
"Super-covariates": Using predicted control group outcome as a covariate in randomized clinical trials.
The power of randomized controlled clinical trials to demonstrate the efficacy of a drug compared with a control group depends not just on how efficacious the drug is, but also on the variation in patients' outcomes. Adjusting for prognostic covariates during trial analysis can reduce this variation. For this reason, the primary statistical analysis of a clinical trial is often based on regression models that besides terms for treatment and some further terms (e.g., stratification factors used in the randomization scheme of the trial) also includes a baseline (pre-treatment) assessment of the primary outcome. We suggest to include a "super-covariate"-that is, a patient-specific prediction of the control group outcome-as a further covariate (but not as an offset). We train a prognostic model or ensembles of such models on the individual patient (or aggregate) data of other studies in similar patients, but not the new trial under analysis. This has the potential to use historical data to increase the power of clinical trials and avoids the concern of type I error inflation with Bayesian approaches, but in contrast to them has a greater benefit for larger sample sizes. It is important for prognostic models behind "super-covariates" to generalize well across different patient populations in order to similarly reduce unexplained variability whether the trial(s) to develop the model are identical to the new trial or not. In an example in neovascular age-related macular degeneration we saw efficiency gains from the use of a "super-covariate".
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.