{"title":"甘菊抗炎、抗胆碱酯酶、抗氧化和增强记忆对重铬酸钾诱导的雄性Wistar大鼠神经毒性的影响","authors":"Kingsley Afoke Iteire , Tolulope Judah Gbayisomore , Olalekan Marvelous Olatuyi","doi":"10.1016/j.jchemneu.2023.102308","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the protective effect of aqueous <span><em>Phyllanthus amarus</em></span><span><span><span> leaf extract (APALE) in Potassium dichromate<span> (PDc)-induced neurotoxicity. Seventy young adult male, </span></span>Wistar rats with a weight of 130–150 g, were randomised into seven groups (n = 10): Group 1; distilled water; Group 2: 300 mg/kg APALE; Group 3: 17 mg/kg PDc; Group 4: 5 mg/kg </span>Donepezil<span><span><span> (DPZ); Group 5: 17 mg/kg PDc + 400 mg/kg APALE; Group 6:17 mg/kg PDc + 200 mg/kg APALE; Group 7: 17 mg/kg PDc + 5 mg/kg DPZ. All administrations were given once daily via an orogastric cannula for 28 consecutive days. Cognitive assessment tests were employed to ascertain the treatments' effects on the rats' cognitive function. At the end of the experiment, the rats were sacrificed, morphometric analysis was done, and the brains were dissected for histology, enzyme, and other </span>biochemical analysis<span><span>. Findings from this study showed that APALE significantly improved locomotive activity, recognition memory sensitivity, protection against fear and anxiety, enhanced decision-making, and improved memory function in a dose-dependent manner comparably to DPZ. In addition, APALE significantly increased antioxidants level, reducing oxidative stress in PDc-induced neurotoxic rats and significantly reducing brain </span>acetylcholinesterase (AchE) activity by regulating </span></span>gamma amino butyric acid (GABA) levels in PDc-induced neurotoxic rats compared to DPZ. Furthermore, APALE alleviated neuroinflammatory responses via maintaining histoarchitecture and down-regulation of IBA1 and Tau in PDc-induced rats. In conclusion, APALE protected against PDc-induced neurotoxicity via a combination of anti-inflammatory, anticholinergic, and antioxidant effects on the prefrontal cortex of rats.</span></span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"132 ","pages":"Article 102308"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory, anticholinesterase, antioxidant, and memory enhancement potential of Phyllanthus amarus in potassium-dichromate induced neurotoxicity of male Wistar rats\",\"authors\":\"Kingsley Afoke Iteire , Tolulope Judah Gbayisomore , Olalekan Marvelous Olatuyi\",\"doi\":\"10.1016/j.jchemneu.2023.102308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the protective effect of aqueous <span><em>Phyllanthus amarus</em></span><span><span><span> leaf extract (APALE) in Potassium dichromate<span> (PDc)-induced neurotoxicity. Seventy young adult male, </span></span>Wistar rats with a weight of 130–150 g, were randomised into seven groups (n = 10): Group 1; distilled water; Group 2: 300 mg/kg APALE; Group 3: 17 mg/kg PDc; Group 4: 5 mg/kg </span>Donepezil<span><span><span> (DPZ); Group 5: 17 mg/kg PDc + 400 mg/kg APALE; Group 6:17 mg/kg PDc + 200 mg/kg APALE; Group 7: 17 mg/kg PDc + 5 mg/kg DPZ. All administrations were given once daily via an orogastric cannula for 28 consecutive days. Cognitive assessment tests were employed to ascertain the treatments' effects on the rats' cognitive function. At the end of the experiment, the rats were sacrificed, morphometric analysis was done, and the brains were dissected for histology, enzyme, and other </span>biochemical analysis<span><span>. Findings from this study showed that APALE significantly improved locomotive activity, recognition memory sensitivity, protection against fear and anxiety, enhanced decision-making, and improved memory function in a dose-dependent manner comparably to DPZ. In addition, APALE significantly increased antioxidants level, reducing oxidative stress in PDc-induced neurotoxic rats and significantly reducing brain </span>acetylcholinesterase (AchE) activity by regulating </span></span>gamma amino butyric acid (GABA) levels in PDc-induced neurotoxic rats compared to DPZ. Furthermore, APALE alleviated neuroinflammatory responses via maintaining histoarchitecture and down-regulation of IBA1 and Tau in PDc-induced rats. In conclusion, APALE protected against PDc-induced neurotoxicity via a combination of anti-inflammatory, anticholinergic, and antioxidant effects on the prefrontal cortex of rats.</span></span></p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"132 \",\"pages\":\"Article 102308\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061823000789\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061823000789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Anti-inflammatory, anticholinesterase, antioxidant, and memory enhancement potential of Phyllanthus amarus in potassium-dichromate induced neurotoxicity of male Wistar rats
This study investigated the protective effect of aqueous Phyllanthus amarus leaf extract (APALE) in Potassium dichromate (PDc)-induced neurotoxicity. Seventy young adult male, Wistar rats with a weight of 130–150 g, were randomised into seven groups (n = 10): Group 1; distilled water; Group 2: 300 mg/kg APALE; Group 3: 17 mg/kg PDc; Group 4: 5 mg/kg Donepezil (DPZ); Group 5: 17 mg/kg PDc + 400 mg/kg APALE; Group 6:17 mg/kg PDc + 200 mg/kg APALE; Group 7: 17 mg/kg PDc + 5 mg/kg DPZ. All administrations were given once daily via an orogastric cannula for 28 consecutive days. Cognitive assessment tests were employed to ascertain the treatments' effects on the rats' cognitive function. At the end of the experiment, the rats were sacrificed, morphometric analysis was done, and the brains were dissected for histology, enzyme, and other biochemical analysis. Findings from this study showed that APALE significantly improved locomotive activity, recognition memory sensitivity, protection against fear and anxiety, enhanced decision-making, and improved memory function in a dose-dependent manner comparably to DPZ. In addition, APALE significantly increased antioxidants level, reducing oxidative stress in PDc-induced neurotoxic rats and significantly reducing brain acetylcholinesterase (AchE) activity by regulating gamma amino butyric acid (GABA) levels in PDc-induced neurotoxic rats compared to DPZ. Furthermore, APALE alleviated neuroinflammatory responses via maintaining histoarchitecture and down-regulation of IBA1 and Tau in PDc-induced rats. In conclusion, APALE protected against PDc-induced neurotoxicity via a combination of anti-inflammatory, anticholinergic, and antioxidant effects on the prefrontal cortex of rats.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.