Tao Jin, Tianhong Wang, Quan Xiong, Yingzhong Tian, Long Li, Quan Zhang, Chen-Hua Yeow
{"title":"模块化软机器人与折纸皮肤的多功能应用。","authors":"Tao Jin, Tianhong Wang, Quan Xiong, Yingzhong Tian, Long Li, Quan Zhang, Chen-Hua Yeow","doi":"10.1089/soro.2022.0064","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 4","pages":"785-796"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modular Soft Robot with Origami Skin for Versatile Applications.\",\"authors\":\"Tao Jin, Tianhong Wang, Quan Xiong, Yingzhong Tian, Long Li, Quan Zhang, Chen-Hua Yeow\",\"doi\":\"10.1089/soro.2022.0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 4\",\"pages\":\"785-796\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0064\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0064","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Modular Soft Robot with Origami Skin for Versatile Applications.
Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.