Brenda Cabrera-Mendoza, Laura Stertz, Katherine Najera, Sudhakar Selvaraj, Antonio L. Teixeira, Thomas D. Meyer, Gabriel R. Fries, Consuelo Walss-Bass
{"title":"在受试者体内对物质使用障碍死后大脑和血液中的表观遗传时钟进行跨组织分析","authors":"Brenda Cabrera-Mendoza, Laura Stertz, Katherine Najera, Sudhakar Selvaraj, Antonio L. Teixeira, Thomas D. Meyer, Gabriel R. Fries, Consuelo Walss-Bass","doi":"10.1002/ajmg.b.32920","DOIUrl":null,"url":null,"abstract":"<p>There is a possible accelerated biological aging in patients with substance use disorders (SUD). The evaluation of epigenetic clocks, which are accurate estimators of biological aging based on DNA methylation changes, has been limited to blood tissue in patients with SUD. Consequently, the impact of biological aging in the brain of individuals with SUD remains unknown. In this study, we evaluated multiple epigenetic clocks (DNAmAge, DNAmAgeHannum, DNAmAgeSkinBlood, DNAmPhenoAge, DNAmGrimAge, and DNAmTL) in individuals with SUD (<i>n</i> = 42), including alcohol (<i>n</i> = 10), opioid (<i>n</i> = 19), and stimulant use disorder (<i>n</i> = 13), and controls (<i>n</i> = 10) in postmortem brain (prefrontal cortex) and blood tissue obtained from the same individuals. We found a higher DNAmPhenoAge (<i>β</i> = 0.191, <i>p</i>-value = 0.0104) and a nominally lower DNAmTL (<i>β</i> = −0.149, <i>p</i>-value = 0.0603) in blood from individuals with SUD compared to controls. SUD subgroup analysis showed a nominally lower brain DNAmTL in subjects with alcohol use disorder, compared to stimulant use disorder and controls (<i>β</i> = 0.0150, <i>p</i>-value = 0.087). Cross-tissue analyzes indicated a lower blood DNAmTL and a higher blood DNAmAge compared to their respective brain values in the SUD group. This study highlights the relevance of tissue specificity in biological aging studies and suggests that peripheral measures of epigenetic clocks in SUD may depend on the specific type of drug used.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"192 1-2","pages":"13-27"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32920","citationCount":"2","resultStr":"{\"title\":\"Within subject cross-tissue analyzes of epigenetic clocks in substance use disorder postmortem brain and blood\",\"authors\":\"Brenda Cabrera-Mendoza, Laura Stertz, Katherine Najera, Sudhakar Selvaraj, Antonio L. Teixeira, Thomas D. Meyer, Gabriel R. Fries, Consuelo Walss-Bass\",\"doi\":\"10.1002/ajmg.b.32920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a possible accelerated biological aging in patients with substance use disorders (SUD). The evaluation of epigenetic clocks, which are accurate estimators of biological aging based on DNA methylation changes, has been limited to blood tissue in patients with SUD. Consequently, the impact of biological aging in the brain of individuals with SUD remains unknown. In this study, we evaluated multiple epigenetic clocks (DNAmAge, DNAmAgeHannum, DNAmAgeSkinBlood, DNAmPhenoAge, DNAmGrimAge, and DNAmTL) in individuals with SUD (<i>n</i> = 42), including alcohol (<i>n</i> = 10), opioid (<i>n</i> = 19), and stimulant use disorder (<i>n</i> = 13), and controls (<i>n</i> = 10) in postmortem brain (prefrontal cortex) and blood tissue obtained from the same individuals. We found a higher DNAmPhenoAge (<i>β</i> = 0.191, <i>p</i>-value = 0.0104) and a nominally lower DNAmTL (<i>β</i> = −0.149, <i>p</i>-value = 0.0603) in blood from individuals with SUD compared to controls. SUD subgroup analysis showed a nominally lower brain DNAmTL in subjects with alcohol use disorder, compared to stimulant use disorder and controls (<i>β</i> = 0.0150, <i>p</i>-value = 0.087). Cross-tissue analyzes indicated a lower blood DNAmTL and a higher blood DNAmAge compared to their respective brain values in the SUD group. This study highlights the relevance of tissue specificity in biological aging studies and suggests that peripheral measures of epigenetic clocks in SUD may depend on the specific type of drug used.</p>\",\"PeriodicalId\":7673,\"journal\":{\"name\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"volume\":\"192 1-2\",\"pages\":\"13-27\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32920\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32920\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32920","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Within subject cross-tissue analyzes of epigenetic clocks in substance use disorder postmortem brain and blood
There is a possible accelerated biological aging in patients with substance use disorders (SUD). The evaluation of epigenetic clocks, which are accurate estimators of biological aging based on DNA methylation changes, has been limited to blood tissue in patients with SUD. Consequently, the impact of biological aging in the brain of individuals with SUD remains unknown. In this study, we evaluated multiple epigenetic clocks (DNAmAge, DNAmAgeHannum, DNAmAgeSkinBlood, DNAmPhenoAge, DNAmGrimAge, and DNAmTL) in individuals with SUD (n = 42), including alcohol (n = 10), opioid (n = 19), and stimulant use disorder (n = 13), and controls (n = 10) in postmortem brain (prefrontal cortex) and blood tissue obtained from the same individuals. We found a higher DNAmPhenoAge (β = 0.191, p-value = 0.0104) and a nominally lower DNAmTL (β = −0.149, p-value = 0.0603) in blood from individuals with SUD compared to controls. SUD subgroup analysis showed a nominally lower brain DNAmTL in subjects with alcohol use disorder, compared to stimulant use disorder and controls (β = 0.0150, p-value = 0.087). Cross-tissue analyzes indicated a lower blood DNAmTL and a higher blood DNAmAge compared to their respective brain values in the SUD group. This study highlights the relevance of tissue specificity in biological aging studies and suggests that peripheral measures of epigenetic clocks in SUD may depend on the specific type of drug used.
期刊介绍:
Neuropsychiatric Genetics, Part B of the American Journal of Medical Genetics (AJMG) , provides a forum for experimental and clinical investigations of the genetic mechanisms underlying neurologic and psychiatric disorders. It is a resource for novel genetics studies of the heritable nature of psychiatric and other nervous system disorders, characterized at the molecular, cellular or behavior levels. Neuropsychiatric Genetics publishes eight times per year.