使用改进的惯性投影算法进行乳腺癌筛查的分割可行性问题。

IF 1.6 Q4 ONCOLOGY International Journal of Breast Cancer Pub Date : 2023-01-01 DOI:10.1155/2023/2060375
Pennipat Nabheerong, Warissara Kiththiworaphongkich, Watcharaporn Cholamjiak
{"title":"使用改进的惯性投影算法进行乳腺癌筛查的分割可行性问题。","authors":"Pennipat Nabheerong,&nbsp;Warissara Kiththiworaphongkich,&nbsp;Watcharaporn Cholamjiak","doi":"10.1155/2023/2060375","DOIUrl":null,"url":null,"abstract":"<p><p>To detect breast cancer in mammography screening practice, we modify the inertial relaxed CQ algorithm with Mann's iteration for solving split feasibility problems in real Hilbert spaces to apply in an extreme learning machine as an optimizer. Weak convergence of the proposed algorithm is proved under certain mild conditions. Moreover, we present the advantage of our algorithm by comparing it with existing machine learning methods. The highest performance value of 85.03% accuracy, 82.56% precision, 87.65% recall, and 85.03% F1-score show that our algorithm performs better than the other machine learning models.</p>","PeriodicalId":46159,"journal":{"name":"International Journal of Breast Cancer","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breast Cancer Screening Using a Modified Inertial Projective Algorithms for Split Feasibility Problems.\",\"authors\":\"Pennipat Nabheerong,&nbsp;Warissara Kiththiworaphongkich,&nbsp;Watcharaporn Cholamjiak\",\"doi\":\"10.1155/2023/2060375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To detect breast cancer in mammography screening practice, we modify the inertial relaxed CQ algorithm with Mann's iteration for solving split feasibility problems in real Hilbert spaces to apply in an extreme learning machine as an optimizer. Weak convergence of the proposed algorithm is proved under certain mild conditions. Moreover, we present the advantage of our algorithm by comparing it with existing machine learning methods. The highest performance value of 85.03% accuracy, 82.56% precision, 87.65% recall, and 85.03% F1-score show that our algorithm performs better than the other machine learning models.</p>\",\"PeriodicalId\":46159,\"journal\":{\"name\":\"International Journal of Breast Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Breast Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2060375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Breast Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2060375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了在乳腺x线摄影筛查实践中检测乳腺癌,我们改进了Mann迭代求解实际Hilbert空间中分裂可行性问题的惯性松弛CQ算法,将其作为优化器应用于极限学习机。在一定的温和条件下证明了该算法的弱收敛性。此外,通过与现有机器学习方法的比较,我们展示了我们算法的优势。85.03%的准确率、82.56%的精度、87.65%的召回率和85.03%的f1分数的最高性能值表明,我们的算法比其他机器学习模型性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breast Cancer Screening Using a Modified Inertial Projective Algorithms for Split Feasibility Problems.

To detect breast cancer in mammography screening practice, we modify the inertial relaxed CQ algorithm with Mann's iteration for solving split feasibility problems in real Hilbert spaces to apply in an extreme learning machine as an optimizer. Weak convergence of the proposed algorithm is proved under certain mild conditions. Moreover, we present the advantage of our algorithm by comparing it with existing machine learning methods. The highest performance value of 85.03% accuracy, 82.56% precision, 87.65% recall, and 85.03% F1-score show that our algorithm performs better than the other machine learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
19 weeks
期刊介绍: International Journal of Breast Cancer is a peer-reviewed, Open Access journal that provides a forum for scientists, clinicians, and health care professionals working in breast cancer research and management. The journal publishes original research articles, review articles, and clinical studies related to molecular pathology, genomics, genetic predisposition, screening and diagnosis, disease markers, drug sensitivity and resistance, as well as novel therapies, with a specific focus on molecular targeted agents and immune therapies.
期刊最新文献
PI3K Mutation Profiles on Exons 9 (E545K and E542K) and 20 (H1047R) in Mexican Patients With HER-2 Overexpressed Breast Cancer and Its Relevance on Clinical-Pathological and Survival Biological Effects. Factors Associated With Uptake of Breast Cancer Screening Among Catholic Nuns in Lake Zone, Tanzania. Triple-Negative Breast Cancer: Tumor Immunogenicity and Beyond. Assessing Awareness, Attitude, and Practices of Breast Cancer Screening and Prevention Among General Public and Physicians in Pakistan: A Nation With the Highest Breast Cancer Incidence in Asia. Assessment of Tissue Eosinophilic Infiltration in Invasive Mammary Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1