多个鸟嘌呤-胞嘧啶(GC)碱基对约束下的DNA序列。

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2023-09-18 DOI:10.1109/TNB.2023.3316431
Xuwei Yang;Changjun Zhou
{"title":"多个鸟嘌呤-胞嘧啶(GC)碱基对约束下的DNA序列。","authors":"Xuwei Yang;Changjun Zhou","doi":"10.1109/TNB.2023.3316431","DOIUrl":null,"url":null,"abstract":"DNA computing is a new computing method that has high efficiency in solving large-scale nonlinear and Non-deterministic Polynomial complete problems. The design of DNA sequences is an important step in DNA computing, and the quality of the DNA sequences directly affects the accuracy of DNA computing results. Efficiently designing high-quality DNA sequences is currently a significant challenge. In order to improve the efficiency of DNA sequence design, a sparrow evolutionary search algorithm (SESA) is proposed by us. It inherits the fast convergence of the sparrow search algorithm and avoids the situation that the sparrow search algorithm is prone to fall into a local optimum, which greatly improves the search performance of the algorithm on discrete numerical problems. In order to improve the quality of DNA sequence, a new constraint, multiple GC constraint, has been proposed in this paper. Simulated experiments in NUPACK show that this constraint can greatly improve the quality of the DNA sequences designed by us. Compared with previous results, our DNA sequences have better stability.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 2","pages":"252-261"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Sequences Under Multiple Guanine–Cytosine (GC) Base Pairs Constraint\",\"authors\":\"Xuwei Yang;Changjun Zhou\",\"doi\":\"10.1109/TNB.2023.3316431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA computing is a new computing method that has high efficiency in solving large-scale nonlinear and Non-deterministic Polynomial complete problems. The design of DNA sequences is an important step in DNA computing, and the quality of the DNA sequences directly affects the accuracy of DNA computing results. Efficiently designing high-quality DNA sequences is currently a significant challenge. In order to improve the efficiency of DNA sequence design, a sparrow evolutionary search algorithm (SESA) is proposed by us. It inherits the fast convergence of the sparrow search algorithm and avoids the situation that the sparrow search algorithm is prone to fall into a local optimum, which greatly improves the search performance of the algorithm on discrete numerical problems. In order to improve the quality of DNA sequence, a new constraint, multiple GC constraint, has been proposed in this paper. Simulated experiments in NUPACK show that this constraint can greatly improve the quality of the DNA sequences designed by us. Compared with previous results, our DNA sequences have better stability.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"23 2\",\"pages\":\"252-261\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10254295/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10254295/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

DNA计算是一种新的计算方法,在求解大规模非线性和非确定性多项式完全问题时具有很高的效率。DNA序列的设计是DNA计算的重要步骤,DNA序列的质量直接影响DNA计算结果的准确性。高效设计高质量的DNA序列目前是一项重大挑战。为了提高DNA序列设计的效率,我们提出了一种麻雀进化搜索算法(SESA),它继承了麻雀搜索算法的快速收敛性,避免了麻雀搜索容易陷入局部最优的情况,大大提高了算法在离散数值问题上的搜索性能。为了提高DNA序列的质量,本文提出了一种新的约束条件——多重GC约束。在NUPACK中的模拟实验表明,这种约束可以大大提高我们设计的DNA序列的质量。与以前的结果相比,我们的DNA序列具有更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA Sequences Under Multiple Guanine–Cytosine (GC) Base Pairs Constraint
DNA computing is a new computing method that has high efficiency in solving large-scale nonlinear and Non-deterministic Polynomial complete problems. The design of DNA sequences is an important step in DNA computing, and the quality of the DNA sequences directly affects the accuracy of DNA computing results. Efficiently designing high-quality DNA sequences is currently a significant challenge. In order to improve the efficiency of DNA sequence design, a sparrow evolutionary search algorithm (SESA) is proposed by us. It inherits the fast convergence of the sparrow search algorithm and avoids the situation that the sparrow search algorithm is prone to fall into a local optimum, which greatly improves the search performance of the algorithm on discrete numerical problems. In order to improve the quality of DNA sequence, a new constraint, multiple GC constraint, has been proposed in this paper. Simulated experiments in NUPACK show that this constraint can greatly improve the quality of the DNA sequences designed by us. Compared with previous results, our DNA sequences have better stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1