干扰素- β在培养的人类星形胶质细胞中诱导I类主要组织相容性复合体(MHC-I)的表达和促炎表型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-11-01 DOI:10.1016/j.diff.2022.10.004
Raffaela Silvestre Ignarro , André Luis Bombeiro , Gabriela Bortolança Chiarotto , Luciana Politti Cartarozzi , Lilian de Oliveira Coser , Enrico Ghizoni , Helder Tedeschi , Fernando Cendes , Iscia Lopes-Cendes , Fabio Rogerio , Alexandre Leite Rodrigues de Oliveira
{"title":"干扰素- β在培养的人类星形胶质细胞中诱导I类主要组织相容性复合体(MHC-I)的表达和促炎表型","authors":"Raffaela Silvestre Ignarro ,&nbsp;André Luis Bombeiro ,&nbsp;Gabriela Bortolança Chiarotto ,&nbsp;Luciana Politti Cartarozzi ,&nbsp;Lilian de Oliveira Coser ,&nbsp;Enrico Ghizoni ,&nbsp;Helder Tedeschi ,&nbsp;Fernando Cendes ,&nbsp;Iscia Lopes-Cendes ,&nbsp;Fabio Rogerio ,&nbsp;Alexandre Leite Rodrigues de Oliveira","doi":"10.1016/j.diff.2022.10.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Major histocompatibility complex class I (MHC-I) has been implicated in several types of neuroplasticity phenomena. Interferon beta-1b (IFN-β) increases MHC-I expression by motoneurons after sciatic nerve crush in mice, improving axonal growth and functional recovery. Additionally, IFN-β induces glial hypertrophy associated with upregulation of </span>glial fibrillary acidic protein (GFAP) and MHC-I in murine astrocytes </span><em>in vitro</em><span><span><span>. As knowledge about MHC-I and its role in synaptic plasticity in human astrocytes (HAs) is scarce, we investigated these aspects in mature HAs obtained from the neocortex of patients undergoing surgery due to hippocampal sclerosis. Cells were exposed to media in the absence (0 IU/ml) or presence of IFN-β for 5 days (500 IU/ml). Beta-2 microglobulin (β2m), a component of the MHC-I, GFAP and vimentin proteins, was quantified by flow cytometry (FC) and increased by 100%, 60% and 46%, respectively, after IFN-β exposure. We also performed qRT–PCR gene expression analyses for </span>β2m, GFAP, vimentin, and pro- and anti-inflammatory cytokines. Our data showed that IFN-β-treated astrocytes displayed β2m and GFAP gene upregulation. Additionally, they presented a proinflammatory profile with increase in the IL-6 and IL-1β genes and a tendency to upregulate TNF-α. Moreover, we evaluated the effect of HAs conditioned medium (CM) on the formation/maintenance of neurites/synapses by the PC12 lineage. </span>Synaptophysin<span> protein expression was quantified by FC. The CM of IFN-β-activated astrocytes was not harmful to PC12 neurites, and there was no change in synaptophysin protein expression. Therefore, IFN-β activated HAs by increasing GFAP, vimentin and MHC-I protein expression. Like MHC-I modulation and astrocyte activation may be protective after peripheral nerve damage and in some neurodegenerative conditions, this study opens perspectives on the pathophysiological roles of astroglial MHC-I in the human CNS.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interferon-beta induces major histocompatibility complex of class I (MHC-I) expression and a proinflammatory phenotype in cultivated human astrocytes\",\"authors\":\"Raffaela Silvestre Ignarro ,&nbsp;André Luis Bombeiro ,&nbsp;Gabriela Bortolança Chiarotto ,&nbsp;Luciana Politti Cartarozzi ,&nbsp;Lilian de Oliveira Coser ,&nbsp;Enrico Ghizoni ,&nbsp;Helder Tedeschi ,&nbsp;Fernando Cendes ,&nbsp;Iscia Lopes-Cendes ,&nbsp;Fabio Rogerio ,&nbsp;Alexandre Leite Rodrigues de Oliveira\",\"doi\":\"10.1016/j.diff.2022.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Major histocompatibility complex class I (MHC-I) has been implicated in several types of neuroplasticity phenomena. Interferon beta-1b (IFN-β) increases MHC-I expression by motoneurons after sciatic nerve crush in mice, improving axonal growth and functional recovery. Additionally, IFN-β induces glial hypertrophy associated with upregulation of </span>glial fibrillary acidic protein (GFAP) and MHC-I in murine astrocytes </span><em>in vitro</em><span><span><span>. As knowledge about MHC-I and its role in synaptic plasticity in human astrocytes (HAs) is scarce, we investigated these aspects in mature HAs obtained from the neocortex of patients undergoing surgery due to hippocampal sclerosis. Cells were exposed to media in the absence (0 IU/ml) or presence of IFN-β for 5 days (500 IU/ml). Beta-2 microglobulin (β2m), a component of the MHC-I, GFAP and vimentin proteins, was quantified by flow cytometry (FC) and increased by 100%, 60% and 46%, respectively, after IFN-β exposure. We also performed qRT–PCR gene expression analyses for </span>β2m, GFAP, vimentin, and pro- and anti-inflammatory cytokines. Our data showed that IFN-β-treated astrocytes displayed β2m and GFAP gene upregulation. Additionally, they presented a proinflammatory profile with increase in the IL-6 and IL-1β genes and a tendency to upregulate TNF-α. Moreover, we evaluated the effect of HAs conditioned medium (CM) on the formation/maintenance of neurites/synapses by the PC12 lineage. </span>Synaptophysin<span> protein expression was quantified by FC. The CM of IFN-β-activated astrocytes was not harmful to PC12 neurites, and there was no change in synaptophysin protein expression. Therefore, IFN-β activated HAs by increasing GFAP, vimentin and MHC-I protein expression. Like MHC-I modulation and astrocyte activation may be protective after peripheral nerve damage and in some neurodegenerative conditions, this study opens perspectives on the pathophysiological roles of astroglial MHC-I in the human CNS.</span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468122000780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

主要组织相容性复合体I类(MHC-I)与几种类型的神经可塑性现象有关。干扰素β -1b (IFN-β)增加小鼠坐骨神经挤压后运动神经元MHC-I的表达,促进轴突生长和功能恢复。此外,IFN-β在体外小鼠星形胶质细胞中诱导与胶质纤维酸性蛋白(GFAP)和MHC-I上调相关的胶质细胞肥大。由于对mhc - 1及其在人类星形胶质细胞(HAs)突触可塑性中的作用的了解很少,我们在海马硬化手术患者新皮层获得的成熟HAs中研究了这些方面。将细胞暴露在不含(0 IU/ml)或存在IFN-β的培养基中5天(500 IU/ml)。β -2微球蛋白(β2m)是MHC-I、GFAP和vimentin蛋白的一个组成部分,流式细胞术(FC)对其进行了定量分析,发现IFN-β暴露后,β -2微球蛋白(β2m)分别增加了100%、60%和46%。我们还进行了β2m、GFAP、vimentin、促炎性因子和抗炎性因子的qRT-PCR基因表达分析。我们的数据显示,IFN-β处理的星形胶质细胞显示β2m和GFAP基因上调。此外,他们表现出促炎特征,IL-6和IL-1β基因增加,TNF-α倾向上调。此外,我们评估了HAs条件培养基(CM)对PC12谱系神经突/突触形成/维持的影响。用FC定量检测Synaptophysin蛋白的表达。IFN-β激活的星形胶质细胞对PC12神经突无损伤,突触素蛋白表达无变化。因此,IFN-β通过增加GFAP、vimentin和MHC-I蛋白的表达来激活HAs。就像MHC-I调节和星形胶质细胞激活可能在周围神经损伤后和一些神经退行性疾病中具有保护作用一样,本研究为星形胶质细胞MHC-I在人类中枢神经系统中的病理生理作用开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interferon-beta induces major histocompatibility complex of class I (MHC-I) expression and a proinflammatory phenotype in cultivated human astrocytes

Major histocompatibility complex class I (MHC-I) has been implicated in several types of neuroplasticity phenomena. Interferon beta-1b (IFN-β) increases MHC-I expression by motoneurons after sciatic nerve crush in mice, improving axonal growth and functional recovery. Additionally, IFN-β induces glial hypertrophy associated with upregulation of glial fibrillary acidic protein (GFAP) and MHC-I in murine astrocytes in vitro. As knowledge about MHC-I and its role in synaptic plasticity in human astrocytes (HAs) is scarce, we investigated these aspects in mature HAs obtained from the neocortex of patients undergoing surgery due to hippocampal sclerosis. Cells were exposed to media in the absence (0 IU/ml) or presence of IFN-β for 5 days (500 IU/ml). Beta-2 microglobulin (β2m), a component of the MHC-I, GFAP and vimentin proteins, was quantified by flow cytometry (FC) and increased by 100%, 60% and 46%, respectively, after IFN-β exposure. We also performed qRT–PCR gene expression analyses for β2m, GFAP, vimentin, and pro- and anti-inflammatory cytokines. Our data showed that IFN-β-treated astrocytes displayed β2m and GFAP gene upregulation. Additionally, they presented a proinflammatory profile with increase in the IL-6 and IL-1β genes and a tendency to upregulate TNF-α. Moreover, we evaluated the effect of HAs conditioned medium (CM) on the formation/maintenance of neurites/synapses by the PC12 lineage. Synaptophysin protein expression was quantified by FC. The CM of IFN-β-activated astrocytes was not harmful to PC12 neurites, and there was no change in synaptophysin protein expression. Therefore, IFN-β activated HAs by increasing GFAP, vimentin and MHC-I protein expression. Like MHC-I modulation and astrocyte activation may be protective after peripheral nerve damage and in some neurodegenerative conditions, this study opens perspectives on the pathophysiological roles of astroglial MHC-I in the human CNS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1