基于多智能体模型的电力多机组分布式预测控制

Q2 Computer Science 自动化学报 Pub Date : 2014-11-01 DOI:10.1016/S1874-1029(14)60409-2
Zhong-Qi LI , Hui YANG , Kun-Peng ZHANG , Ya-Ting FU
{"title":"基于多智能体模型的电力多机组分布式预测控制","authors":"Zhong-Qi LI ,&nbsp;Hui YANG ,&nbsp;Kun-Peng ZHANG ,&nbsp;Ya-Ting FU","doi":"10.1016/S1874-1029(14)60409-2","DOIUrl":null,"url":null,"abstract":"<div><p>The distributed-power electric multiple units (EMUs) are widely used in high-speed railway. Due to the structural characteristic of mutual-coupled power units in EMUs, each power unit is set as an agent. Combining with the traction/brake characteristic curve and running data of EMUs, a subtractive clustering method and pattern classification algorithm are adopted to set up a multi-model set for every agent. Then, the multi-agent model is established according to the multi-agent network topology and mutual-coupled constraint relations. Finally, we adopt a smooth start switching control strategy and a multi-agent distributed coordination control algorithm to ensure the synchronous speed tracking control of each agent. Simulation results on the actual CRH380A running data show the effectiveness of the proposed approach.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60409-2","citationCount":"6","resultStr":"{\"title\":\"Distributed Model Predictive Control Based on Multi-agent Model for Electric Multiple Units\",\"authors\":\"Zhong-Qi LI ,&nbsp;Hui YANG ,&nbsp;Kun-Peng ZHANG ,&nbsp;Ya-Ting FU\",\"doi\":\"10.1016/S1874-1029(14)60409-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The distributed-power electric multiple units (EMUs) are widely used in high-speed railway. Due to the structural characteristic of mutual-coupled power units in EMUs, each power unit is set as an agent. Combining with the traction/brake characteristic curve and running data of EMUs, a subtractive clustering method and pattern classification algorithm are adopted to set up a multi-model set for every agent. Then, the multi-agent model is established according to the multi-agent network topology and mutual-coupled constraint relations. Finally, we adopt a smooth start switching control strategy and a multi-agent distributed coordination control algorithm to ensure the synchronous speed tracking control of each agent. Simulation results on the actual CRH380A running data show the effectiveness of the proposed approach.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60409-2\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914604092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914604092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

摘要

分布式电力多机组在高速铁路中得到了广泛的应用。由于动车组中动力单元相互耦合的结构特点,将每个动力单元设置为一个agent。结合动车组的牵引/制动特性曲线和运行数据,采用相减聚类方法和模式分类算法,为每个agent建立多模型集。然后,根据多智能体网络拓扑结构和相互耦合约束关系建立多智能体模型。最后,采用平滑启动切换控制策略和多智能体分布式协调控制算法,保证各智能体的同步速度跟踪控制。在CRH380A实际运行数据上的仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Model Predictive Control Based on Multi-agent Model for Electric Multiple Units

The distributed-power electric multiple units (EMUs) are widely used in high-speed railway. Due to the structural characteristic of mutual-coupled power units in EMUs, each power unit is set as an agent. Combining with the traction/brake characteristic curve and running data of EMUs, a subtractive clustering method and pattern classification algorithm are adopted to set up a multi-model set for every agent. Then, the multi-agent model is established according to the multi-agent network topology and mutual-coupled constraint relations. Finally, we adopt a smooth start switching control strategy and a multi-agent distributed coordination control algorithm to ensure the synchronous speed tracking control of each agent. Simulation results on the actual CRH380A running data show the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
期刊最新文献
Robust Approximations to Joint Chance-constrained Problems A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems Forward Affine Point Set Matching Under Variational Bayesian Framework SAR Image Despeckling by Sparse Reconstruction Based on Shearlets A semi-supervised agglomerative hierarchical clustering method based on dynamically updating constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1