{"title":"在回归模型中使用贝叶斯因子评估预测因子的相对重要性。","authors":"Xin Gu","doi":"10.1037/met0000431","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a Bayesian inference approach to evaluate the relative importance of predictors in regression models. Depending on the interpretation of importance, a number of indices are introduced, such as the standardized regression coefficient, the average squared semipartial correlation, and the dominance analysis measure. Researchers' theories about relative importance are represented by order constrained hypotheses. Support for or against the hypothesis is quantified by the Bayes factor, which can be computed from the prior and posterior distributions of the importance index. As the distributions of the indices are often unknown, we specify prior and posterior distributions for the covariance matrix of all variables in the regression model. The prior and posterior distributions of each importance index can be obtained from the prior and posterior samples of the covariance matrix. Simulation studies are conducted to show different inferences resulting from various importance indices and to investigate the performance of the proposed Bayesian testing approach. The procedure of evaluating relative importance using Bayes factors is illustrated using two real data examples. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"28 4","pages":"825-842"},"PeriodicalIF":7.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluating predictors' relative importance using Bayes factors in regression models.\",\"authors\":\"Xin Gu\",\"doi\":\"10.1037/met0000431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a Bayesian inference approach to evaluate the relative importance of predictors in regression models. Depending on the interpretation of importance, a number of indices are introduced, such as the standardized regression coefficient, the average squared semipartial correlation, and the dominance analysis measure. Researchers' theories about relative importance are represented by order constrained hypotheses. Support for or against the hypothesis is quantified by the Bayes factor, which can be computed from the prior and posterior distributions of the importance index. As the distributions of the indices are often unknown, we specify prior and posterior distributions for the covariance matrix of all variables in the regression model. The prior and posterior distributions of each importance index can be obtained from the prior and posterior samples of the covariance matrix. Simulation studies are conducted to show different inferences resulting from various importance indices and to investigate the performance of the proposed Bayesian testing approach. The procedure of evaluating relative importance using Bayes factors is illustrated using two real data examples. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\"28 4\",\"pages\":\"825-842\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000431\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000431","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating predictors' relative importance using Bayes factors in regression models.
This study presents a Bayesian inference approach to evaluate the relative importance of predictors in regression models. Depending on the interpretation of importance, a number of indices are introduced, such as the standardized regression coefficient, the average squared semipartial correlation, and the dominance analysis measure. Researchers' theories about relative importance are represented by order constrained hypotheses. Support for or against the hypothesis is quantified by the Bayes factor, which can be computed from the prior and posterior distributions of the importance index. As the distributions of the indices are often unknown, we specify prior and posterior distributions for the covariance matrix of all variables in the regression model. The prior and posterior distributions of each importance index can be obtained from the prior and posterior samples of the covariance matrix. Simulation studies are conducted to show different inferences resulting from various importance indices and to investigate the performance of the proposed Bayesian testing approach. The procedure of evaluating relative importance using Bayes factors is illustrated using two real data examples. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.