{"title":"基于人的声音的可解释的COVID-19检测系统","authors":"Huining Li , Xingyu Chen , Xiaoye Qian , Huan Chen , Zhengxiong Li , Soumyadeep Bhattacharjee , Hanbin Zhang , Ming-Chun Huang , Wenyao Xu","doi":"10.1016/j.smhl.2022.100332","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic signals generated by the human body have often been used as biomarkers to diagnose and monitor diseases. As the pathogenesis of COVID-19 indicates impairments in the respiratory system, digital acoustic biomarkers of COVID-19 are under investigation. In this paper, we explore an accurate and explainable COVID-19 diagnosis approach based on human speech, cough, and breath data using the power of machine learning<span>. We first analyze our design space considerations from the data aspect and model aspect. Then, we perform data augmentation, Mel-spectrogram transformation, and develop a deep residual architecture-based model for prediction. Experimental results show that our system outperforms the baseline, with the ROC-AUC result increased by 5.47%. Finally, we perform an interpretation analysis based on the visualization of the activation map to further validate the model.</span></p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"26 ","pages":"Article 100332"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An explainable COVID-19 detection system based on human sounds\",\"authors\":\"Huining Li , Xingyu Chen , Xiaoye Qian , Huan Chen , Zhengxiong Li , Soumyadeep Bhattacharjee , Hanbin Zhang , Ming-Chun Huang , Wenyao Xu\",\"doi\":\"10.1016/j.smhl.2022.100332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acoustic signals generated by the human body have often been used as biomarkers to diagnose and monitor diseases. As the pathogenesis of COVID-19 indicates impairments in the respiratory system, digital acoustic biomarkers of COVID-19 are under investigation. In this paper, we explore an accurate and explainable COVID-19 diagnosis approach based on human speech, cough, and breath data using the power of machine learning<span>. We first analyze our design space considerations from the data aspect and model aspect. Then, we perform data augmentation, Mel-spectrogram transformation, and develop a deep residual architecture-based model for prediction. Experimental results show that our system outperforms the baseline, with the ROC-AUC result increased by 5.47%. Finally, we perform an interpretation analysis based on the visualization of the activation map to further validate the model.</span></p></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"26 \",\"pages\":\"Article 100332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648322000666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648322000666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
An explainable COVID-19 detection system based on human sounds
Acoustic signals generated by the human body have often been used as biomarkers to diagnose and monitor diseases. As the pathogenesis of COVID-19 indicates impairments in the respiratory system, digital acoustic biomarkers of COVID-19 are under investigation. In this paper, we explore an accurate and explainable COVID-19 diagnosis approach based on human speech, cough, and breath data using the power of machine learning. We first analyze our design space considerations from the data aspect and model aspect. Then, we perform data augmentation, Mel-spectrogram transformation, and develop a deep residual architecture-based model for prediction. Experimental results show that our system outperforms the baseline, with the ROC-AUC result increased by 5.47%. Finally, we perform an interpretation analysis based on the visualization of the activation map to further validate the model.