{"title":"具有排斥信号的形态发生模型","authors":"A. Minarsky, S. Krymsky, C. Soulé, N. Morozova","doi":"10.1007/s10441-022-09454-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper is devoted to a conceptual model of cell patterning, based on a generalized notion of the epigenetic code of a cell determining its state<i>.</i> We introduce the concept of signaling depending both upon the spatial distance between cells and the distance between their cell states (s-distance); signaling can repel cells in the space of cell states (s-space) or attract them. The influence of different types of repelling signaling on the evolution of cells is considered. Stabilizing signaling, namely a signaling monotonically decreasing with s-distance, causes the restoring of cell states after perturbations; destabilizing signaling, i.e., the one in which the signaling monotonically increases with s-distance, causes the appearance of pairs of cells with alternating cell states (one close to the state conventionally called “head”, and another close to the “tail” state). Non-monotonic (in s-space) signaling splits the cells into groups. The model shows that different types of signaling may provide different types of cellular patterns. General principles for applying this model to complex cellular structures are discussed.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model of Morphogenesis with Repelling Signaling\",\"authors\":\"A. Minarsky, S. Krymsky, C. Soulé, N. Morozova\",\"doi\":\"10.1007/s10441-022-09454-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper is devoted to a conceptual model of cell patterning, based on a generalized notion of the epigenetic code of a cell determining its state<i>.</i> We introduce the concept of signaling depending both upon the spatial distance between cells and the distance between their cell states (s-distance); signaling can repel cells in the space of cell states (s-space) or attract them. The influence of different types of repelling signaling on the evolution of cells is considered. Stabilizing signaling, namely a signaling monotonically decreasing with s-distance, causes the restoring of cell states after perturbations; destabilizing signaling, i.e., the one in which the signaling monotonically increases with s-distance, causes the appearance of pairs of cells with alternating cell states (one close to the state conventionally called “head”, and another close to the “tail” state). Non-monotonic (in s-space) signaling splits the cells into groups. The model shows that different types of signaling may provide different types of cellular patterns. General principles for applying this model to complex cellular structures are discussed.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-022-09454-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09454-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The paper is devoted to a conceptual model of cell patterning, based on a generalized notion of the epigenetic code of a cell determining its state. We introduce the concept of signaling depending both upon the spatial distance between cells and the distance between their cell states (s-distance); signaling can repel cells in the space of cell states (s-space) or attract them. The influence of different types of repelling signaling on the evolution of cells is considered. Stabilizing signaling, namely a signaling monotonically decreasing with s-distance, causes the restoring of cell states after perturbations; destabilizing signaling, i.e., the one in which the signaling monotonically increases with s-distance, causes the appearance of pairs of cells with alternating cell states (one close to the state conventionally called “head”, and another close to the “tail” state). Non-monotonic (in s-space) signaling splits the cells into groups. The model shows that different types of signaling may provide different types of cellular patterns. General principles for applying this model to complex cellular structures are discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.