{"title":"审查在资源受限的环境中使用WBAN的可佩戴、低成本外部心环记录仪的要求。","authors":"Natarajan Sriraam, Priyanka Chakravarty","doi":"10.1615/CritRevBiomedEng.2023045334","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease (CVD) has become the most serious health concern in India and globally. The cost of treatment for CVD is very high and in a country like India, where most of the population belongs to rural area, affording treatment is not possible. Diagnosis and treatment are further hampered due to shortage of medical expertise as well as the unavailability of the wearable device. This makes the condition worst in rural areas. As a result of delay in diagnosis, patients do not receive appropriate treatment on time, thus risking lives. Hence, early detection of physiological abnormalities in patients is the best solution to avoid sudden death. In India, the majority of ECG diagnosis is done using a standard ECG machine or Holter monitor, which are not adequate to detect transient or infrequent arrhythmia as the window of detection is 30 s or up to 48 h. So, for arrhythmia diagnosis or syncope and palpitation, external cardiac loop recorder (ECLR) is preferred. ECLR is a monitoring device which records cardiac activities and detects infrequent arrhythmias with syncope and palpitation of a subject for longer period continuously. Due to recent improvements in technology, such as flexible electronics and wireless body area network (WBAN), wearable medical devices are progressively assisting people to monitor their health status while doing their day-to-day activities and furnishing more information to clinicians for early diagnosis and treatment. Flexible electronics allows to develop an electronic circuit on a flexible substrate hence making the device bendable and stretchable. WBAN is a wireless communication between different nodes like sensors and processors that are located at different points on the body. By incorporating technologies such as miniaturization of electronics, making flexible electronics and WBAN concept in ECLR, the device can be made wearable so as to not interfere with the patient's day-to-day activities. This review paper discusses the limitations of existing standard ECG machines as well as how to make the existing ECLR devices more robust, more advanced, more comfortable and also affordable.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"51 5","pages":"27-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of the Requirements for a Wearable, Low-Cost External Cardiac Loop Recorder with WBAN in Resource-Constrained Settings.\",\"authors\":\"Natarajan Sriraam, Priyanka Chakravarty\",\"doi\":\"10.1615/CritRevBiomedEng.2023045334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease (CVD) has become the most serious health concern in India and globally. The cost of treatment for CVD is very high and in a country like India, where most of the population belongs to rural area, affording treatment is not possible. Diagnosis and treatment are further hampered due to shortage of medical expertise as well as the unavailability of the wearable device. This makes the condition worst in rural areas. As a result of delay in diagnosis, patients do not receive appropriate treatment on time, thus risking lives. Hence, early detection of physiological abnormalities in patients is the best solution to avoid sudden death. In India, the majority of ECG diagnosis is done using a standard ECG machine or Holter monitor, which are not adequate to detect transient or infrequent arrhythmia as the window of detection is 30 s or up to 48 h. So, for arrhythmia diagnosis or syncope and palpitation, external cardiac loop recorder (ECLR) is preferred. ECLR is a monitoring device which records cardiac activities and detects infrequent arrhythmias with syncope and palpitation of a subject for longer period continuously. Due to recent improvements in technology, such as flexible electronics and wireless body area network (WBAN), wearable medical devices are progressively assisting people to monitor their health status while doing their day-to-day activities and furnishing more information to clinicians for early diagnosis and treatment. Flexible electronics allows to develop an electronic circuit on a flexible substrate hence making the device bendable and stretchable. WBAN is a wireless communication between different nodes like sensors and processors that are located at different points on the body. By incorporating technologies such as miniaturization of electronics, making flexible electronics and WBAN concept in ECLR, the device can be made wearable so as to not interfere with the patient's day-to-day activities. This review paper discusses the limitations of existing standard ECG machines as well as how to make the existing ECLR devices more robust, more advanced, more comfortable and also affordable.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"51 5\",\"pages\":\"27-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2023045334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023045334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Review of the Requirements for a Wearable, Low-Cost External Cardiac Loop Recorder with WBAN in Resource-Constrained Settings.
Cardiovascular disease (CVD) has become the most serious health concern in India and globally. The cost of treatment for CVD is very high and in a country like India, where most of the population belongs to rural area, affording treatment is not possible. Diagnosis and treatment are further hampered due to shortage of medical expertise as well as the unavailability of the wearable device. This makes the condition worst in rural areas. As a result of delay in diagnosis, patients do not receive appropriate treatment on time, thus risking lives. Hence, early detection of physiological abnormalities in patients is the best solution to avoid sudden death. In India, the majority of ECG diagnosis is done using a standard ECG machine or Holter monitor, which are not adequate to detect transient or infrequent arrhythmia as the window of detection is 30 s or up to 48 h. So, for arrhythmia diagnosis or syncope and palpitation, external cardiac loop recorder (ECLR) is preferred. ECLR is a monitoring device which records cardiac activities and detects infrequent arrhythmias with syncope and palpitation of a subject for longer period continuously. Due to recent improvements in technology, such as flexible electronics and wireless body area network (WBAN), wearable medical devices are progressively assisting people to monitor their health status while doing their day-to-day activities and furnishing more information to clinicians for early diagnosis and treatment. Flexible electronics allows to develop an electronic circuit on a flexible substrate hence making the device bendable and stretchable. WBAN is a wireless communication between different nodes like sensors and processors that are located at different points on the body. By incorporating technologies such as miniaturization of electronics, making flexible electronics and WBAN concept in ECLR, the device can be made wearable so as to not interfere with the patient's day-to-day activities. This review paper discusses the limitations of existing standard ECG machines as well as how to make the existing ECLR devices more robust, more advanced, more comfortable and also affordable.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.