{"title":"基于熔池动态几何特征的激光焊接多模型质量预测方法","authors":"Ziqian Wu, Qiling Li, Zhenying Xu","doi":"10.1089/3dp.2021.0252","DOIUrl":null,"url":null,"abstract":"<p><p>Laser welding quality forecast is highly significant during the laser manufacturing process. However, extracting the dynamic characteristics of the molten pool in the short laser welding process makes predicting of the welding quality in real time difficult. Accordingly, this study proposes a multimodel quality forecast (MMQF) method based on dynamic geometric features of molten pool to forecast the welding quality in real time. For extraction of geometric features of molten pool, an improved fully convolutional neural network is proposed to segment the collected dynamic molten pool images during the entire welding process. In addition, several dynamic geometric features of the molten pool are extracted by using the minimum enclosed rectangle algorithm with an evaluation of the performance by several statistical indexes. With regard to forecasting the welding quality, a nonlinear quadratic kernel logistic regression model is proposed by mapping the linear inseparable features to the high dimensional space. Experimental results show that the MMQF method can make an effective and stable forecast of welding quality. It performs well under small data and can satisfy the requirement of real-time forecast.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"723-731"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440663/pdf/","citationCount":"0","resultStr":"{\"title\":\"Laser Welding Multimodel Quality Forecast Method Based on Dynamic Geometric Features of the Molten Pool.\",\"authors\":\"Ziqian Wu, Qiling Li, Zhenying Xu\",\"doi\":\"10.1089/3dp.2021.0252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laser welding quality forecast is highly significant during the laser manufacturing process. However, extracting the dynamic characteristics of the molten pool in the short laser welding process makes predicting of the welding quality in real time difficult. Accordingly, this study proposes a multimodel quality forecast (MMQF) method based on dynamic geometric features of molten pool to forecast the welding quality in real time. For extraction of geometric features of molten pool, an improved fully convolutional neural network is proposed to segment the collected dynamic molten pool images during the entire welding process. In addition, several dynamic geometric features of the molten pool are extracted by using the minimum enclosed rectangle algorithm with an evaluation of the performance by several statistical indexes. With regard to forecasting the welding quality, a nonlinear quadratic kernel logistic regression model is proposed by mapping the linear inseparable features to the high dimensional space. Experimental results show that the MMQF method can make an effective and stable forecast of welding quality. It performs well under small data and can satisfy the requirement of real-time forecast.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 4\",\"pages\":\"723-731\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0252\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Laser Welding Multimodel Quality Forecast Method Based on Dynamic Geometric Features of the Molten Pool.
Laser welding quality forecast is highly significant during the laser manufacturing process. However, extracting the dynamic characteristics of the molten pool in the short laser welding process makes predicting of the welding quality in real time difficult. Accordingly, this study proposes a multimodel quality forecast (MMQF) method based on dynamic geometric features of molten pool to forecast the welding quality in real time. For extraction of geometric features of molten pool, an improved fully convolutional neural network is proposed to segment the collected dynamic molten pool images during the entire welding process. In addition, several dynamic geometric features of the molten pool are extracted by using the minimum enclosed rectangle algorithm with an evaluation of the performance by several statistical indexes. With regard to forecasting the welding quality, a nonlinear quadratic kernel logistic regression model is proposed by mapping the linear inseparable features to the high dimensional space. Experimental results show that the MMQF method can make an effective and stable forecast of welding quality. It performs well under small data and can satisfy the requirement of real-time forecast.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.