{"title":"格陵兰杉林地区地表径流增加","authors":"Andrew J. Tedstone, Horst Machguth","doi":"10.1038/s41558-022-01371-z","DOIUrl":null,"url":null,"abstract":"At high elevations of ice sheets, melting snow generally percolates and refreezes, so does not contribute to the shrinking of the ice sheet. Here, we systematically map the runoff area of the Greenland ice sheet using surface rivers visible on satellite imagery. Between 1985 and 2020, the maximum runoff elevation rose by 58–329 metres, expanding the runoff area by 29% (–8%/+6%). Excess melt beyond the refreezing capacity of pores in snowfall has created near-impermeable ice slabs that sustain surface runoff even in cooler summers. We show that two surface mass balance models over-estimate the runoff area by 16–30%. Once restricted to our observed areas, they indicate that 5–10% of recent runoff probably comes from the expanded runoff area. Runoff from higher elevations is sensitive to projected warming as further increases in the runoff limit will increase the runoff area disproportionately. Ice that melts at high elevation often refreezes and, therefore, does not contribute to the shrinking of ice sheets. Here, the authors show that the elevation at which melting ice starts to contribute to runoff has increased over recent years in Greenland, expanding the runoff area by 29%.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"12 7","pages":"672-676"},"PeriodicalIF":29.6000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Increasing surface runoff from Greenland’s firn areas\",\"authors\":\"Andrew J. Tedstone, Horst Machguth\",\"doi\":\"10.1038/s41558-022-01371-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At high elevations of ice sheets, melting snow generally percolates and refreezes, so does not contribute to the shrinking of the ice sheet. Here, we systematically map the runoff area of the Greenland ice sheet using surface rivers visible on satellite imagery. Between 1985 and 2020, the maximum runoff elevation rose by 58–329 metres, expanding the runoff area by 29% (–8%/+6%). Excess melt beyond the refreezing capacity of pores in snowfall has created near-impermeable ice slabs that sustain surface runoff even in cooler summers. We show that two surface mass balance models over-estimate the runoff area by 16–30%. Once restricted to our observed areas, they indicate that 5–10% of recent runoff probably comes from the expanded runoff area. Runoff from higher elevations is sensitive to projected warming as further increases in the runoff limit will increase the runoff area disproportionately. Ice that melts at high elevation often refreezes and, therefore, does not contribute to the shrinking of ice sheets. Here, the authors show that the elevation at which melting ice starts to contribute to runoff has increased over recent years in Greenland, expanding the runoff area by 29%.\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"12 7\",\"pages\":\"672-676\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-022-01371-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-022-01371-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Increasing surface runoff from Greenland’s firn areas
At high elevations of ice sheets, melting snow generally percolates and refreezes, so does not contribute to the shrinking of the ice sheet. Here, we systematically map the runoff area of the Greenland ice sheet using surface rivers visible on satellite imagery. Between 1985 and 2020, the maximum runoff elevation rose by 58–329 metres, expanding the runoff area by 29% (–8%/+6%). Excess melt beyond the refreezing capacity of pores in snowfall has created near-impermeable ice slabs that sustain surface runoff even in cooler summers. We show that two surface mass balance models over-estimate the runoff area by 16–30%. Once restricted to our observed areas, they indicate that 5–10% of recent runoff probably comes from the expanded runoff area. Runoff from higher elevations is sensitive to projected warming as further increases in the runoff limit will increase the runoff area disproportionately. Ice that melts at high elevation often refreezes and, therefore, does not contribute to the shrinking of ice sheets. Here, the authors show that the elevation at which melting ice starts to contribute to runoff has increased over recent years in Greenland, expanding the runoff area by 29%.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.