Kyosuke Kita, Sanako Yoshida, Shu Ishikawa, Ken-Ichi Yoshida
{"title":"苍白芽孢杆菌PI8基因组序列推测细菌素基因簇的功能分析。","authors":"Kyosuke Kita, Sanako Yoshida, Shu Ishikawa, Ken-Ichi Yoshida","doi":"10.2323/jgam.2021.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriocins are a large family of peptides synthesized ribosomally by a variety of bacterial species. The genome of one of the thermophilic Gram-positive bacteria, Aeribacillus pallidus PI8, was found to possess an operon comprising five genes possibly involved in the production of a putative bacteriocin that was named pcnABCDE for the production of \"pallidocyclicin.\" This study investigated the function of the pcn operon experimentally. The heterologous expression of the entire pcn operon from the plasmid was toxic to Escherichia coli but not to Bacillus subtilis. However, when the entire pcn operon was expressed constitutively, even the growth of B. subtilis was impaired, and at least pcnA was implied to serve as the precursor of pallidocyclicin. In addition, a strain of B. subtilis expressing the entire pcn operon from the plasmid showed toxicity to another thermophilic species, Geobacillus kaustophilus, at elevated temperatures, whereas another strain lacking pcnE alone from the pcn operon lost the toxicity, suggesting that pcnE might be involved in the biosynthesis of pallidocyclicin when it is produced in B. subtilis.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional analysis of a gene cluster for putative bacteriocin deduced from the genome sequence of Aeribacillus pallidus PI8.\",\"authors\":\"Kyosuke Kita, Sanako Yoshida, Shu Ishikawa, Ken-Ichi Yoshida\",\"doi\":\"10.2323/jgam.2021.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriocins are a large family of peptides synthesized ribosomally by a variety of bacterial species. The genome of one of the thermophilic Gram-positive bacteria, Aeribacillus pallidus PI8, was found to possess an operon comprising five genes possibly involved in the production of a putative bacteriocin that was named pcnABCDE for the production of \\\"pallidocyclicin.\\\" This study investigated the function of the pcn operon experimentally. The heterologous expression of the entire pcn operon from the plasmid was toxic to Escherichia coli but not to Bacillus subtilis. However, when the entire pcn operon was expressed constitutively, even the growth of B. subtilis was impaired, and at least pcnA was implied to serve as the precursor of pallidocyclicin. In addition, a strain of B. subtilis expressing the entire pcn operon from the plasmid showed toxicity to another thermophilic species, Geobacillus kaustophilus, at elevated temperatures, whereas another strain lacking pcnE alone from the pcn operon lost the toxicity, suggesting that pcnE might be involved in the biosynthesis of pallidocyclicin when it is produced in B. subtilis.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2021.11.003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2021.11.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Functional analysis of a gene cluster for putative bacteriocin deduced from the genome sequence of Aeribacillus pallidus PI8.
Bacteriocins are a large family of peptides synthesized ribosomally by a variety of bacterial species. The genome of one of the thermophilic Gram-positive bacteria, Aeribacillus pallidus PI8, was found to possess an operon comprising five genes possibly involved in the production of a putative bacteriocin that was named pcnABCDE for the production of "pallidocyclicin." This study investigated the function of the pcn operon experimentally. The heterologous expression of the entire pcn operon from the plasmid was toxic to Escherichia coli but not to Bacillus subtilis. However, when the entire pcn operon was expressed constitutively, even the growth of B. subtilis was impaired, and at least pcnA was implied to serve as the precursor of pallidocyclicin. In addition, a strain of B. subtilis expressing the entire pcn operon from the plasmid showed toxicity to another thermophilic species, Geobacillus kaustophilus, at elevated temperatures, whereas another strain lacking pcnE alone from the pcn operon lost the toxicity, suggesting that pcnE might be involved in the biosynthesis of pallidocyclicin when it is produced in B. subtilis.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.