从进化生态系统模拟到人类行为的计算模型。

IF 3.2 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Wiley Interdisciplinary Reviews-Cognitive Science Pub Date : 2022-11-01 DOI:10.1002/wcs.1622
Peter J Bentley, Soo Ling Lim
{"title":"从进化生态系统模拟到人类行为的计算模型。","authors":"Peter J Bentley,&nbsp;Soo Ling Lim","doi":"10.1002/wcs.1622","DOIUrl":null,"url":null,"abstract":"<p><p>We have a wide breadth of computational tools available today that enable a more ethical approach to the study of human cognition and behavior. We argue that the use of computer models to study evolving ecosystems provides a rich source of inspiration, as they enable the study of complex systems that change over time. Often employing a combination of genetic algorithms and agent-based models, these methods span theoretical approaches from games to complexification, nature-inspired methods from studies of self-replication to the evolution of eyes, and evolutionary ecosystems of humans, from entire economies to the effects of personalities in teamwork. The review of works provided here illustrates the power of evolutionary ecosystem simulations and how they enable new insights for researchers. They also demonstrate a novel methodology of hypothesis exploration: building a computational model that encapsulates a hypothesis of human cognition enables it to be tested under different conditions, with its predictions compared to real data to enable corroboration. Such computational models of human behavior provide us with virtual test labs in which unlimited experiments can be performed. This article is categorized under: Computer Science and Robotics > Artificial Intelligence.</p>","PeriodicalId":47720,"journal":{"name":"Wiley Interdisciplinary Reviews-Cognitive Science","volume":"13 6","pages":"e1622"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/1e/WCS-13-e1622.PMC9786238.pdf","citationCount":"1","resultStr":"{\"title\":\"From evolutionary ecosystem simulations to computational models of human behavior.\",\"authors\":\"Peter J Bentley,&nbsp;Soo Ling Lim\",\"doi\":\"10.1002/wcs.1622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have a wide breadth of computational tools available today that enable a more ethical approach to the study of human cognition and behavior. We argue that the use of computer models to study evolving ecosystems provides a rich source of inspiration, as they enable the study of complex systems that change over time. Often employing a combination of genetic algorithms and agent-based models, these methods span theoretical approaches from games to complexification, nature-inspired methods from studies of self-replication to the evolution of eyes, and evolutionary ecosystems of humans, from entire economies to the effects of personalities in teamwork. The review of works provided here illustrates the power of evolutionary ecosystem simulations and how they enable new insights for researchers. They also demonstrate a novel methodology of hypothesis exploration: building a computational model that encapsulates a hypothesis of human cognition enables it to be tested under different conditions, with its predictions compared to real data to enable corroboration. Such computational models of human behavior provide us with virtual test labs in which unlimited experiments can be performed. This article is categorized under: Computer Science and Robotics > Artificial Intelligence.</p>\",\"PeriodicalId\":47720,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Cognitive Science\",\"volume\":\"13 6\",\"pages\":\"e1622\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/1e/WCS-13-e1622.PMC9786238.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Cognitive Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1002/wcs.1622\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1002/wcs.1622","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

今天,我们有广泛可用的计算工具,可以采用更合乎道德的方法来研究人类认知和行为。我们认为,使用计算机模型来研究进化中的生态系统提供了丰富的灵感来源,因为它们使研究随时间变化的复杂系统成为可能。这些方法通常结合了遗传算法和基于主体的模型,涵盖了从游戏到复杂性的理论方法,从自我复制研究到眼睛进化的自然启发方法,以及人类进化生态系统,从整个经济到团队合作中的个性影响。这里提供的工作综述说明了进化生态系统模拟的力量,以及它们如何为研究人员提供新的见解。他们还展示了一种新颖的假设探索方法:建立一个计算模型,封装人类认知的假设,使其能够在不同条件下进行测试,并将其预测与实际数据进行比较,从而实现确证。这种人类行为的计算模型为我们提供了虚拟的测试实验室,在那里可以进行无限的实验。本文分类为:计算机科学与机器人>人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From evolutionary ecosystem simulations to computational models of human behavior.

We have a wide breadth of computational tools available today that enable a more ethical approach to the study of human cognition and behavior. We argue that the use of computer models to study evolving ecosystems provides a rich source of inspiration, as they enable the study of complex systems that change over time. Often employing a combination of genetic algorithms and agent-based models, these methods span theoretical approaches from games to complexification, nature-inspired methods from studies of self-replication to the evolution of eyes, and evolutionary ecosystems of humans, from entire economies to the effects of personalities in teamwork. The review of works provided here illustrates the power of evolutionary ecosystem simulations and how they enable new insights for researchers. They also demonstrate a novel methodology of hypothesis exploration: building a computational model that encapsulates a hypothesis of human cognition enables it to be tested under different conditions, with its predictions compared to real data to enable corroboration. Such computational models of human behavior provide us with virtual test labs in which unlimited experiments can be performed. This article is categorized under: Computer Science and Robotics > Artificial Intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
7.70%
发文量
50
期刊最新文献
The Multiple Dimensions of Familiarity: From Representations to Phenomenology. Compositionality in perception: A framework. An update of the development of motor behavior. Consciousness Under the Spotlight: The Problem of Measuring Subjective Experience. Catching Mind Wandering With Pupillometry: Conceptual and Methodological Challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1