纳米VO2工程中金属-绝缘体相变过程中扭曲态相的定量空间映射。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2023-01-01 DOI:10.1080/14686996.2022.2150525
Yuichi Ashida, Takafumi Ishibe, Jinfeng Yang, Nobuyasu Naruse, Yoshiaki Nakamura
{"title":"纳米VO2工程中金属-绝缘体相变过程中扭曲态相的定量空间映射。","authors":"Yuichi Ashida,&nbsp;Takafumi Ishibe,&nbsp;Jinfeng Yang,&nbsp;Nobuyasu Naruse,&nbsp;Yoshiaki Nakamura","doi":"10.1080/14686996.2022.2150525","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium dioxide (VO<sub>2</sub>) material, known for changing physical properties due to metal-insulator transition (MIT) near room temperature, has been reported to undergo a phase change depending on the strain. This fact can be a significant problem for nanoscale devices in VO<sub>2</sub>, where the strain field covers a large area fraction, spatially non-uniform, and the amount of strain can vary during the MIT process. Direct measurement of the strain field distribution during MIT is expected to establish a methodology for material phase identification. We have demonstrated the effectiveness of geometric phase analysis (GPA), high-resolution transmission electron microscopy techniques, and transmission electron diffraction (TED). The GPA images show that the nanoregions of interest are under tensile strain conditions of less than 0.4% as well as a compressive strain of about 0.7% (Rutile phase VO<sub>2</sub>[100] direction), indicating that the origin of the newly emerged TED spots in MIT contains a triclinic phase. This study provides a substantial understanding of the strain-temperature phase diagram and strain engineering strategies for effective phase management of nanoscale VO<sub>2</sub>.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"1-9"},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative spatial mapping of distorted state phases during the metal-insulator phase transition for nanoscale VO<sub>2</sub> engineering.\",\"authors\":\"Yuichi Ashida,&nbsp;Takafumi Ishibe,&nbsp;Jinfeng Yang,&nbsp;Nobuyasu Naruse,&nbsp;Yoshiaki Nakamura\",\"doi\":\"10.1080/14686996.2022.2150525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vanadium dioxide (VO<sub>2</sub>) material, known for changing physical properties due to metal-insulator transition (MIT) near room temperature, has been reported to undergo a phase change depending on the strain. This fact can be a significant problem for nanoscale devices in VO<sub>2</sub>, where the strain field covers a large area fraction, spatially non-uniform, and the amount of strain can vary during the MIT process. Direct measurement of the strain field distribution during MIT is expected to establish a methodology for material phase identification. We have demonstrated the effectiveness of geometric phase analysis (GPA), high-resolution transmission electron microscopy techniques, and transmission electron diffraction (TED). The GPA images show that the nanoregions of interest are under tensile strain conditions of less than 0.4% as well as a compressive strain of about 0.7% (Rutile phase VO<sub>2</sub>[100] direction), indicating that the origin of the newly emerged TED spots in MIT contains a triclinic phase. This study provides a substantial understanding of the strain-temperature phase diagram and strain engineering strategies for effective phase management of nanoscale VO<sub>2</sub>.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"24 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2022.2150525\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2022.2150525","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钒(VO2)材料因在室温附近发生金属-绝缘体转变(MIT)而改变物理性质,据报道,它会根据应变发生相变。这一事实可能是VO2纳米级器件的一个重大问题,其中应变场覆盖面积很大,空间不均匀,并且在MIT过程中应变量可能会发生变化。直接测量应变场分布在麻省理工有望建立一种方法的材料相识别。我们已经证明了几何相位分析(GPA)、高分辨率透射电子显微镜技术和透射电子衍射(TED)的有效性。GPA图像显示,感兴趣的纳米区域处于小于0.4%的拉伸应变和约0.7%的压缩应变条件下(金红石相VO2[100]方向),表明MIT中新出现的TED点的起源包含三斜相。本研究对纳米VO2的应变-温度相图和有效相管理的应变工程策略提供了实质性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative spatial mapping of distorted state phases during the metal-insulator phase transition for nanoscale VO2 engineering.

Vanadium dioxide (VO2) material, known for changing physical properties due to metal-insulator transition (MIT) near room temperature, has been reported to undergo a phase change depending on the strain. This fact can be a significant problem for nanoscale devices in VO2, where the strain field covers a large area fraction, spatially non-uniform, and the amount of strain can vary during the MIT process. Direct measurement of the strain field distribution during MIT is expected to establish a methodology for material phase identification. We have demonstrated the effectiveness of geometric phase analysis (GPA), high-resolution transmission electron microscopy techniques, and transmission electron diffraction (TED). The GPA images show that the nanoregions of interest are under tensile strain conditions of less than 0.4% as well as a compressive strain of about 0.7% (Rutile phase VO2[100] direction), indicating that the origin of the newly emerged TED spots in MIT contains a triclinic phase. This study provides a substantial understanding of the strain-temperature phase diagram and strain engineering strategies for effective phase management of nanoscale VO2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials Lightweight acoustic hyperbolic paraboloid diaphragms with graphene through self-assembly nanoarchitectonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1