Numpong Punyaratabandhu, Panadda Dechadilok, Wannapong Triampo, Pisut Katavetin
{"title":"肾微血管滤过的流体动力学模型:生理和血流动力学变化对肾小球大小选择性的影响","authors":"Numpong Punyaratabandhu, Panadda Dechadilok, Wannapong Triampo, Pisut Katavetin","doi":"10.1111/micc.12779","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension, and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"29 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrodynamic model for renal microvascular filtration: Effects of physiological and hemodynamic changes on glomerular size-selectivity\",\"authors\":\"Numpong Punyaratabandhu, Panadda Dechadilok, Wannapong Triampo, Pisut Katavetin\",\"doi\":\"10.1111/micc.12779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension, and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18459,\"journal\":{\"name\":\"Microcirculation\",\"volume\":\"29 8\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/micc.12779\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12779","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Hydrodynamic model for renal microvascular filtration: Effects of physiological and hemodynamic changes on glomerular size-selectivity
Objective
The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.
Methods
Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation.
Results
Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension, and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size.
Conclusion
Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.