{"title":"低剂量和高剂量氧化锌纳米颗粒诱导胚胎发生过程中心管畸形的不同细胞机制。","authors":"Mengwei Wang, Ping Zhang, Zeyu Li, Yu Yan, Xin Cheng, Guang Wang, Xuesong Yang","doi":"10.1080/17435390.2022.2124130","DOIUrl":null,"url":null,"abstract":"<p><p>With the wide application of nanometer materials in daily life, people pay more attention to the potential toxicity of nanoparticles to human fetal development once the nanoparticles are absorbed into the human body during pregnancy. However, there was no directly solid evidence for ZnO NPs-caused congenital heart defects. Hence, we investigated the effect of ZnO NPs exposure on early cardiogenesis using the chicken/mouse embryo models. First, we showed ZnO NPs reduced H9c2 cell viability in a dose- and time-dependent manner, while cell autophagy was significantly activated too on the same pattern. During early cardiogenesis, ZnO NPs exposure increased the chance of heart tube malformation, while precardiac cell apoptosis rises in the phenotype of closure defect and Bifida. The hypertrophy was also observed in late-stage chicken/mouse survival embryos exposed to ZnO NPs. Apart from cell apoptosis, high-dose ZnO NPs exposure led to massive programmed necrosis, and further experiments verified that ferroptosis remained primarily in ZnO NPs-induced programmed necrosis. We also revealed that the toxicology of low-dose ZnO NPs was mainly featured in the changes of expressions of key genes instead of causing precardiac cell death. MYL2 and CSRP3 could work as the downstream molecules of the above key genes in the context of ZnO NPs exposure to early cardiogenesis based on RNA sequencing. Taken together, this study for the first time revealed the potential risk of heart tube malformation induced by ZnO NPs exposure through different cellular mechanisms, which depended on low- or high-dose ZnO NPs.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 5","pages":"580-596"},"PeriodicalIF":3.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Different cellular mechanisms from low- and high-dose zinc oxide nanoparticles-induced heart tube malformation during embryogenesis.\",\"authors\":\"Mengwei Wang, Ping Zhang, Zeyu Li, Yu Yan, Xin Cheng, Guang Wang, Xuesong Yang\",\"doi\":\"10.1080/17435390.2022.2124130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the wide application of nanometer materials in daily life, people pay more attention to the potential toxicity of nanoparticles to human fetal development once the nanoparticles are absorbed into the human body during pregnancy. However, there was no directly solid evidence for ZnO NPs-caused congenital heart defects. Hence, we investigated the effect of ZnO NPs exposure on early cardiogenesis using the chicken/mouse embryo models. First, we showed ZnO NPs reduced H9c2 cell viability in a dose- and time-dependent manner, while cell autophagy was significantly activated too on the same pattern. During early cardiogenesis, ZnO NPs exposure increased the chance of heart tube malformation, while precardiac cell apoptosis rises in the phenotype of closure defect and Bifida. The hypertrophy was also observed in late-stage chicken/mouse survival embryos exposed to ZnO NPs. Apart from cell apoptosis, high-dose ZnO NPs exposure led to massive programmed necrosis, and further experiments verified that ferroptosis remained primarily in ZnO NPs-induced programmed necrosis. We also revealed that the toxicology of low-dose ZnO NPs was mainly featured in the changes of expressions of key genes instead of causing precardiac cell death. MYL2 and CSRP3 could work as the downstream molecules of the above key genes in the context of ZnO NPs exposure to early cardiogenesis based on RNA sequencing. Taken together, this study for the first time revealed the potential risk of heart tube malformation induced by ZnO NPs exposure through different cellular mechanisms, which depended on low- or high-dose ZnO NPs.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\"16 5\",\"pages\":\"580-596\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2022.2124130\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2022.2124130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Different cellular mechanisms from low- and high-dose zinc oxide nanoparticles-induced heart tube malformation during embryogenesis.
With the wide application of nanometer materials in daily life, people pay more attention to the potential toxicity of nanoparticles to human fetal development once the nanoparticles are absorbed into the human body during pregnancy. However, there was no directly solid evidence for ZnO NPs-caused congenital heart defects. Hence, we investigated the effect of ZnO NPs exposure on early cardiogenesis using the chicken/mouse embryo models. First, we showed ZnO NPs reduced H9c2 cell viability in a dose- and time-dependent manner, while cell autophagy was significantly activated too on the same pattern. During early cardiogenesis, ZnO NPs exposure increased the chance of heart tube malformation, while precardiac cell apoptosis rises in the phenotype of closure defect and Bifida. The hypertrophy was also observed in late-stage chicken/mouse survival embryos exposed to ZnO NPs. Apart from cell apoptosis, high-dose ZnO NPs exposure led to massive programmed necrosis, and further experiments verified that ferroptosis remained primarily in ZnO NPs-induced programmed necrosis. We also revealed that the toxicology of low-dose ZnO NPs was mainly featured in the changes of expressions of key genes instead of causing precardiac cell death. MYL2 and CSRP3 could work as the downstream molecules of the above key genes in the context of ZnO NPs exposure to early cardiogenesis based on RNA sequencing. Taken together, this study for the first time revealed the potential risk of heart tube malformation induced by ZnO NPs exposure through different cellular mechanisms, which depended on low- or high-dose ZnO NPs.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.