串联深度学习和逻辑回归模型在常规临床实践中优化肥厚性心肌病的检测

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular digital health journal Pub Date : 2022-12-01 DOI:10.1016/j.cvdhj.2022.10.002
Maren Maanja MD, PhD , Peter A. Noseworthy MD, FHRS , Jeffrey B. Geske MD , Michael J. Ackerman MD, PhD , Adelaide M. Arruda-Olson MD, PhD , Steve R. Ommen MD , Zachi I. Attia PhD , Paul A. Friedman MD, FHRS , Konstantinos C. Siontis MD, FHRS
{"title":"串联深度学习和逻辑回归模型在常规临床实践中优化肥厚性心肌病的检测","authors":"Maren Maanja MD, PhD ,&nbsp;Peter A. Noseworthy MD, FHRS ,&nbsp;Jeffrey B. Geske MD ,&nbsp;Michael J. Ackerman MD, PhD ,&nbsp;Adelaide M. Arruda-Olson MD, PhD ,&nbsp;Steve R. Ommen MD ,&nbsp;Zachi I. Attia PhD ,&nbsp;Paul A. Friedman MD, FHRS ,&nbsp;Konstantinos C. Siontis MD, FHRS","doi":"10.1016/j.cvdhj.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>An electrocardiogram (ECG)-based artificial intelligence (AI) algorithm has shown good performance in detecting hypertrophic cardiomyopathy (HCM). However, its application in routine clinical practice may be challenging owing to the low disease prevalence and potentially high false-positive rates.</p></div><div><h3>Objective</h3><p>Identify clinical characteristics associated with true- and false-positive HCM AI-ECG results to improve its clinical application.</p></div><div><h3>Methods</h3><p>We reviewed the records of the 200 patients with highest HCM AI-ECG scores in January 2021 at our institution. Logistic regression was used to create a clinical variable–based “Candidacy for HCM Detection (HCM-DETECT)” score, differentiating true-positive from false-positive AI-ECG results. We validated the HCM-DETECT score in an independent cohort of 200 patients with the highest AI-ECG scores from January 2022.</p></div><div><h3>Results</h3><p>In the 2021 cohort (median age 71 [interquartile range 58–80] years, 48% female), the rates of true-positive, false-positive, and indeterminate AI-ECG results for HCM detection were 36%, 48%, and 16%, respectively. In the 2022 cohort, the rates were 26%, 47%, and 27%, respectively. The HCM-DETECT score included age, coronary artery disease, prior pacemaker, and prior cardiac valve surgery, and had an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.73–0.87) for differentiating true- vs false-positive AI results. When the 2022 cohort was limited to HCM detection candidates identified with the HCM-DETECT score, the false-positive AI-ECG rate was reduced from 47% to 13.5%.</p></div><div><h3>Conclusion</h3><p>Application of a clinical score (HCM-DETECT) in tandem with an AI-ECG model improved HCM detection yield, reducing the false-positive rate of AI-ECG more than 3-fold.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"3 6","pages":"Pages 289-296"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/9d/main.PMC9795257.pdf","citationCount":"1","resultStr":"{\"title\":\"Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice\",\"authors\":\"Maren Maanja MD, PhD ,&nbsp;Peter A. Noseworthy MD, FHRS ,&nbsp;Jeffrey B. Geske MD ,&nbsp;Michael J. Ackerman MD, PhD ,&nbsp;Adelaide M. Arruda-Olson MD, PhD ,&nbsp;Steve R. Ommen MD ,&nbsp;Zachi I. Attia PhD ,&nbsp;Paul A. Friedman MD, FHRS ,&nbsp;Konstantinos C. Siontis MD, FHRS\",\"doi\":\"10.1016/j.cvdhj.2022.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>An electrocardiogram (ECG)-based artificial intelligence (AI) algorithm has shown good performance in detecting hypertrophic cardiomyopathy (HCM). However, its application in routine clinical practice may be challenging owing to the low disease prevalence and potentially high false-positive rates.</p></div><div><h3>Objective</h3><p>Identify clinical characteristics associated with true- and false-positive HCM AI-ECG results to improve its clinical application.</p></div><div><h3>Methods</h3><p>We reviewed the records of the 200 patients with highest HCM AI-ECG scores in January 2021 at our institution. Logistic regression was used to create a clinical variable–based “Candidacy for HCM Detection (HCM-DETECT)” score, differentiating true-positive from false-positive AI-ECG results. We validated the HCM-DETECT score in an independent cohort of 200 patients with the highest AI-ECG scores from January 2022.</p></div><div><h3>Results</h3><p>In the 2021 cohort (median age 71 [interquartile range 58–80] years, 48% female), the rates of true-positive, false-positive, and indeterminate AI-ECG results for HCM detection were 36%, 48%, and 16%, respectively. In the 2022 cohort, the rates were 26%, 47%, and 27%, respectively. The HCM-DETECT score included age, coronary artery disease, prior pacemaker, and prior cardiac valve surgery, and had an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.73–0.87) for differentiating true- vs false-positive AI results. When the 2022 cohort was limited to HCM detection candidates identified with the HCM-DETECT score, the false-positive AI-ECG rate was reduced from 47% to 13.5%.</p></div><div><h3>Conclusion</h3><p>Application of a clinical score (HCM-DETECT) in tandem with an AI-ECG model improved HCM detection yield, reducing the false-positive rate of AI-ECG more than 3-fold.</p></div>\",\"PeriodicalId\":72527,\"journal\":{\"name\":\"Cardiovascular digital health journal\",\"volume\":\"3 6\",\"pages\":\"Pages 289-296\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/9d/main.PMC9795257.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular digital health journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666693622001670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693622001670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

基于心电图(ECG)的人工智能(AI)算法在肥厚性心肌病(HCM)检测中表现出良好的性能。然而,由于低发病率和潜在的高假阳性率,其在常规临床实践中的应用可能具有挑战性。目的探讨HCM AI-ECG真阳性和假阳性的临床特点,提高其临床应用水平。方法回顾我院2021年1月HCM AI-ECG评分最高的200例患者的记录。使用逻辑回归创建基于临床变量的“HCM检测候选资格(HCM- detect)”评分,区分真阳性和假阳性的AI-ECG结果。我们在一个独立队列中验证了HCM-DETECT评分,该队列中有200名自2022年1月起AI-ECG评分最高的患者。结果在2021年的队列中(中位年龄为71岁[四分位间距为58-80]岁,女性占48%),人工智能心电图检测HCM的真阳性、假阳性和不确定率分别为36%、48%和16%。在2022年的队列中,这一比例分别为26%、47%和27%。HCM-DETECT评分包括年龄、冠状动脉疾病、既往起搏器和既往心脏瓣膜手术,用于区分真阳性和假阳性AI结果的受试者工作特征曲线下面积为0.81(95%置信区间为0.73-0.87)。当2022队列仅限于HCM- detect评分确定的HCM检测候选人时,假阳性AI-ECG率从47%降至13.5%。结论临床评分(HCM- detect)与AI-ECG模型联合应用可提高HCM检出率,使AI-ECG的假阳性率降低3倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice

Background

An electrocardiogram (ECG)-based artificial intelligence (AI) algorithm has shown good performance in detecting hypertrophic cardiomyopathy (HCM). However, its application in routine clinical practice may be challenging owing to the low disease prevalence and potentially high false-positive rates.

Objective

Identify clinical characteristics associated with true- and false-positive HCM AI-ECG results to improve its clinical application.

Methods

We reviewed the records of the 200 patients with highest HCM AI-ECG scores in January 2021 at our institution. Logistic regression was used to create a clinical variable–based “Candidacy for HCM Detection (HCM-DETECT)” score, differentiating true-positive from false-positive AI-ECG results. We validated the HCM-DETECT score in an independent cohort of 200 patients with the highest AI-ECG scores from January 2022.

Results

In the 2021 cohort (median age 71 [interquartile range 58–80] years, 48% female), the rates of true-positive, false-positive, and indeterminate AI-ECG results for HCM detection were 36%, 48%, and 16%, respectively. In the 2022 cohort, the rates were 26%, 47%, and 27%, respectively. The HCM-DETECT score included age, coronary artery disease, prior pacemaker, and prior cardiac valve surgery, and had an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.73–0.87) for differentiating true- vs false-positive AI results. When the 2022 cohort was limited to HCM detection candidates identified with the HCM-DETECT score, the false-positive AI-ECG rate was reduced from 47% to 13.5%.

Conclusion

Application of a clinical score (HCM-DETECT) in tandem with an AI-ECG model improved HCM detection yield, reducing the false-positive rate of AI-ECG more than 3-fold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
期刊最新文献
Determinants of global cardiac implantable electrical device remote monitoring utilization – Results from an international survey Cellular-Enabled Remote Patient Monitoring for Pregnancies Complicated by Hypertension Point-of-care testing preferences 2020–2022: Trends over the years Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1