{"title":"优化大规模微生物群落样本的生物群落标记:利用神经网络和迁移学习","authors":"Nan Wang , Teng Wang , Kang Ning","doi":"10.1016/j.ese.2023.100304","DOIUrl":null,"url":null,"abstract":"<div><p>Microbiome research has generated an extensive amount of data, resulting in a wealth of publicly accessible samples. Accurate annotation of these samples is crucial for effectively utilizing microbiome data across scientific disciplines. However, a notable challenge arises from the lack of essential annotations, particularly regarding collection location and sample biome information, which significantly hinders environmental microbiome research. In this study, we introduce Meta-Sorter, a novel approach utilizing neural networks and transfer learning, to enhance biome labeling for thousands of microbiome samples in the MGnify database that have incomplete information. Our findings demonstrate that Meta-Sorter achieved a remarkable accuracy rate of 96.7% in classifying samples among the 16,507 lacking detailed biome annotations. Notably, Meta-Sorter provides precise classifications for representative environmental samples that were previously ambiguously labeled as “Marine” in MGnify, thereby elucidating their specific origins in benthic and water column environments. Moreover, Meta-Sorter effectively distinguishes samples derived from human-environment interactions, enabling clear differentiation between environmental and human-related studies. By improving the completeness of biome label information for numerous microbial community samples, our research facilitates more accurate knowledge discovery across diverse disciplines, with particular implications for environmental research.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"17 ","pages":"Article 100304"},"PeriodicalIF":14.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/89/main.PMC10457426.pdf","citationCount":"0","resultStr":"{\"title\":\"Refining biome labeling for large-scale microbial community samples: Leveraging neural networks and transfer learning\",\"authors\":\"Nan Wang , Teng Wang , Kang Ning\",\"doi\":\"10.1016/j.ese.2023.100304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microbiome research has generated an extensive amount of data, resulting in a wealth of publicly accessible samples. Accurate annotation of these samples is crucial for effectively utilizing microbiome data across scientific disciplines. However, a notable challenge arises from the lack of essential annotations, particularly regarding collection location and sample biome information, which significantly hinders environmental microbiome research. In this study, we introduce Meta-Sorter, a novel approach utilizing neural networks and transfer learning, to enhance biome labeling for thousands of microbiome samples in the MGnify database that have incomplete information. Our findings demonstrate that Meta-Sorter achieved a remarkable accuracy rate of 96.7% in classifying samples among the 16,507 lacking detailed biome annotations. Notably, Meta-Sorter provides precise classifications for representative environmental samples that were previously ambiguously labeled as “Marine” in MGnify, thereby elucidating their specific origins in benthic and water column environments. Moreover, Meta-Sorter effectively distinguishes samples derived from human-environment interactions, enabling clear differentiation between environmental and human-related studies. By improving the completeness of biome label information for numerous microbial community samples, our research facilitates more accurate knowledge discovery across diverse disciplines, with particular implications for environmental research.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"17 \",\"pages\":\"Article 100304\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/89/main.PMC10457426.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498423000698\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000698","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Refining biome labeling for large-scale microbial community samples: Leveraging neural networks and transfer learning
Microbiome research has generated an extensive amount of data, resulting in a wealth of publicly accessible samples. Accurate annotation of these samples is crucial for effectively utilizing microbiome data across scientific disciplines. However, a notable challenge arises from the lack of essential annotations, particularly regarding collection location and sample biome information, which significantly hinders environmental microbiome research. In this study, we introduce Meta-Sorter, a novel approach utilizing neural networks and transfer learning, to enhance biome labeling for thousands of microbiome samples in the MGnify database that have incomplete information. Our findings demonstrate that Meta-Sorter achieved a remarkable accuracy rate of 96.7% in classifying samples among the 16,507 lacking detailed biome annotations. Notably, Meta-Sorter provides precise classifications for representative environmental samples that were previously ambiguously labeled as “Marine” in MGnify, thereby elucidating their specific origins in benthic and water column environments. Moreover, Meta-Sorter effectively distinguishes samples derived from human-environment interactions, enabling clear differentiation between environmental and human-related studies. By improving the completeness of biome label information for numerous microbial community samples, our research facilitates more accurate knowledge discovery across diverse disciplines, with particular implications for environmental research.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.